Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models

协作研究:SaTC:核心:小型:迈向安全可信的树模型

基本信息

  • 批准号:
    2413046
  • 负责人:
  • 金额:
    $ 26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Tree models are an important type of machine learning algorithm used in various applications such as finance, healthcare, and traffic management. They are particularly advantageous due to their simplicity and interpretability, making them well-suited for decision-making tasks, compared to complex neural networks that can be difficult to understand. However, despite their benefits, tree models are not immune to security and privacy concerns. Malicious actors can tamper with tree models or steal intellectual property, posing threats to the integrity and confidentiality of machine learning systems. Further, although there are studies of similar attacks on neural networks, differences between how neural networks and tree models work may affect how well those existing findings apply to tree models. Together, these issues mean there are a number of open questions around enhancing the security and trustworthiness of tree models. This project aims to develop novel strategies to address these questions and develop more robust and trustworthy AI-based systems, and develop both tools and educational opportunities through the work to make the findings widely available and impactful. Specifically, this project addresses the need for robust model authentication, watermarking for intellectual property tracing, machine unlearning for data privacy, and defense against backdoor attacks for tree models. The technical aims are organized around four tasks: a) Pursuing model identification by embedding unique signatures to generate differently embedded models; b) Developing novel methodologies of robust watermarking for tree models, for the purpose of tracing intellectual property; c) Designing novel algorithms for machine unlearning in tree models by exploiting tree reconstruction, residual-stable split, and combination of tree techniques; and d) Investigating the implications of backdoor attacks against tree models by leveraging the insights from the above tasks on tweaking tree models without significantly impacting the accuracy. These research efforts will contribute to the advancement of tree model security and trustworthiness, ensuring that these models can be reliably deployed in real-world applications while mitigating the risk of malicious attacks, unauthorized access, and privacy breaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
树模型是一种重要的机器学习算法,用于金融、医疗保健和交通管理等各种应用。与难以理解的复杂神经网络相比,它们具有特别的优势,因为它们的简单性和可解释性使它们非常适合决策任务。然而,尽管有好处,树模型也不能幸免于安全和隐私问题。恶意行为者可以篡改树模型或窃取知识产权,对机器学习系统的完整性和保密性构成威胁。此外,尽管有针对神经网络的类似攻击的研究,但神经网络和树模型的工作方式之间的差异可能会影响这些现有发现在树模型中的应用情况。总而言之,这些问题意味着围绕增强树模型的安全性和可信性有许多悬而未决的问题。该项目旨在开发新的战略来解决这些问题,并开发更强大和更值得信赖的基于人工智能的系统,并通过工作开发工具和教育机会,使研究结果广泛可用和产生影响。具体地说,该项目解决了健壮的模型身份验证、用于知识产权跟踪的水印、用于数据隐私的机器遗忘以及针对树模型的后门攻击的防御的需求。技术目标围绕四个任务组织:a)通过嵌入唯一签名以生成不同的嵌入模型来进行模型识别;b)为树模型开发用于跟踪知识产权的稳健水印的新方法;c)通过利用树重建、残差稳定分裂和树技术的组合来设计在树模型中机器遗忘的新算法;以及d)通过利用上述任务对树模型进行调整而不显著影响准确性的洞察力来调查对树模型的后门攻击的影响。这些研究工作将有助于提高树模型的安全性和可信度,确保这些模型可以可靠地部署在现实世界的应用程序中,同时降低恶意攻击、未经授权的访问和隐私泄露的风险。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reliable Hardware Watermarks for Deep Learning Systems
Machine Unlearning in Gradient Boosting Decision Trees
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingjie Lao其他文献

On the Construction of Composite Finite Fields for Hardware Obfuscation
硬件混淆的复合有限域构造
  • DOI:
    10.1109/tc.2019.2901483
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Xinmiao Zhang;Yingjie Lao
  • 通讯作者:
    Yingjie Lao
Integral Sampler and Polynomial Multiplication Architecture for Lattice-based Cryptography
用于基于格的密码学的积分采样器和多项式乘法架构
Pipelined High-Throughput NTT Architecture for Lattice-Based Cryptography
用于基于格的密码学的流水线高吞吐量 NTT 架构
An In-Place FFT Architecture for Real-Valued Signals
适用于实值信号的就地 FFT 架构
Sailfish: A Dependency-Aware and Resource Efficient Scheduling for Low Latency in Clouds
Sailfish:云中低延迟的依赖感知和资源高效调度

Yingjie Lao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingjie Lao', 18)}}的其他基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
CAREER: Protecting Deep Learning Systems against Hardware-Oriented Vulnerabilities
职业:保护深度学习系统免受面向硬件的漏洞的影响
  • 批准号:
    2426299
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2247620
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2243052
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
CAREER: Protecting Deep Learning Systems against Hardware-Oriented Vulnerabilities
职业:保护深度学习系统免受面向硬件的漏洞的影响
  • 批准号:
    2047384
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant

相似国自然基金

水凝胶改性陶瓷人工关节牢固结合界面的构筑与减磨润滑机理研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
锆酸铅基反铁电体畴动力学及其调控机理研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
载铁生物炭对土壤镉污染的吸附固定及微生物协同作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
SREBP转录因子BbSre1负调控球孢白僵菌抗真菌物质产生的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向截肢患者运动感知重建的肌电假肢手关节运动反馈时变编码研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向水质应急快检的碳点/微流控限域增强发光传感研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向挠性压电太阳翼的物理信息混合建模与非同位控制方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
随机3维 Burgers 方程正则性研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
犬尿氨酸通过AhR/STAT3轴活化粒细胞样MDSCs促进慢性肾脏病心脏纤维化的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
磁性的机器学习研究: 以图神经网络为中心
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
  • 批准号:
    2230609
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
  • 批准号:
    2237329
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Interactions between Driver and Vehicle Using Batteries
合作研究:SaTC:核心:中:使用电池确保驾驶员和车辆之间的交互安全
  • 批准号:
    2245224
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了