CAREER: Nanoscale sensing and imaging using computational single-molecule nanoscopy
职业:使用计算单分子纳米显微镜进行纳米级传感和成像
基本信息
- 批准号:1653777
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CAREER: Visualizing the Interactions between Individual Molecules within Cell Membranes Using Chemical Probes, Computation, and MicroscopyThe membrane of a cell separates its internal contents, such as organelles, DNA, and proteins, from its environment and therefore controls how chemical signals (e.g., molecules) are sent to and received from other cells. Existing imaging technologies struggle to visualize the nanoscale "wrinkles" and roughness of these membranes due to their small sizes and fast fluctuations. This project will develop a synergistic approach called computational single-molecule nanoscopy that combines optical hardware, image processing software, and molecular sensors for imaging living cells with nanoscale resolution. The proposed technology will visualize the electrical and chemical environments within membranes that govern how they work. Ultimately, this approach will enable scientists to study how nanoscale structures within the membrane influence how molecules are transported across the membrane, which could be useful for the design of nanomedicines that target and kill cancer cells. The PI will collaborate with the Saint Louis Science Center and the Washington University SPECTRA student group to promote the public's scientific and technological understanding of this research. Undergraduate and graduate students involved in the research program will obtain broad knowledge and diverse technical skills in applied physics, optics, spectroscopy, estimation theory, image processing, and biology. These students will receive a unique and comprehensive preparation for modern careers in technology innovation and scientific discovery.The proposed research will develop an integrated chemical, optical, and computational technology, termed computational single-molecule nanoscopy, for sensing and imaging the electrical and chemical properties of cell membranes with nanoscale resolution. The research approach is 1) to investigate the resolution and sensitivity limits of computational optical nanoscopy for measuring nanoscale information; 2) to quantify the performance of fluorescent molecules for sensing the electrical and chemical properties of their nano-environments; and 3) to visualize lipid rafts within cell membranes to determine how they regulate the trafficking of biomolecules across the membrane. The merit of the proposed work lies in innovatively exploiting the synergy between fluorescent molecules and optical microscopes. Rather than simply using fluorescent molecules as beacons that report a biomolecule's location, as current methods do now, the fluorescence emitted by rapidly-diffusing molecules will be used to measure the polarity and fluidity of a nano-environment. To harness the information reported by these molecules, new optical systems and image processing algorithms will be jointly designed to maximize the precision and sensitivity of nanoscale measurements in the presence of noise. Sensing the nanoscale properties of cell membranes will provide new insight into intercellular communication: how electrical, chemical, and mechanical signals propagate between cells and across their membranes.
职业:使用化学探针、计算和显微镜可视化细胞膜内单个分子之间的相互作用细胞膜将其内部内容物(如细胞器、DNA和蛋白质)与其环境分离,因此控制化学信号(例如,分子)被发送到其他细胞并从其他细胞接收。现有的成像技术很难可视化这些膜的纳米级“皱纹”和粗糙度,因为它们的尺寸小,波动快。该项目将开发一种称为计算单分子纳米显微镜的协同方法,该方法结合了光学硬件,图像处理软件和分子传感器,用于以纳米级分辨率成像活细胞。拟议中的技术将可视化膜内的电气和化学环境,这些环境决定了它们如何工作。最终,这种方法将使科学家能够研究膜内的纳米级结构如何影响分子如何穿过膜,这可能有助于设计靶向和杀死癌细胞的纳米药物。PI将与圣刘易斯科学中心和华盛顿大学SPECTRA学生团体合作,促进公众对这项研究的科学和技术理解。参与研究计划的本科生和研究生将获得应用物理,光学,光谱学,估计理论,图像处理和生物学方面的广泛知识和各种技术技能。这些学生将获得在技术创新和科学发现的现代职业生涯的独特和全面的准备。拟议的研究将开发一个集成的化学,光学和计算技术,称为计算单分子纳米显微镜,用于传感和成像的电和化学性质的细胞膜与纳米分辨率。该研究方法是1)调查用于测量纳米级信息的计算光学纳米显微镜的分辨率和灵敏度限制; 2)量化荧光分子的性能,用于感测其纳米环境的电学和化学性质;和3)可视化细胞膜内的脂筏,以确定它们如何调节生物分子跨膜的运输。这项工作的优点在于创新性地利用了荧光分子和光学显微镜之间的协同作用。与目前的方法不同,快速扩散分子发出的荧光将被用来测量纳米环境的极性和流动性,而不是简单地使用荧光分子作为信标来报告生物分子的位置。为了利用这些分子报告的信息,将联合设计新的光学系统和图像处理算法,以在存在噪声的情况下最大限度地提高纳米级测量的精度和灵敏度。感测细胞膜的纳米级特性将为细胞间通信提供新的见解:电,化学和机械信号如何在细胞之间传播并穿过细胞膜。
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fundamental Limits on Measuring the Rotational Constraint of Single Molecules Using Fluorescence Microscopy
使用荧光显微镜测量单分子旋转约束的基本限制
- DOI:10.1103/physrevlett.122.198301
- 发表时间:2019
- 期刊:
- 影响因子:8.6
- 作者:Zhang, Oumeng;Lew, Matthew D.
- 通讯作者:Lew, Matthew D.
Nanoscale Colocalization of Fluorogenic Probes Reveals the Role of Oxygen Vacancies in the Photocatalytic Activity of Tungsten Oxide Nanowires
- DOI:10.1021/acscatal.9b04481
- 发表时间:2020-01
- 期刊:
- 影响因子:12.9
- 作者:Meikun Shen;Tianben Ding;Steven T. Hartman;Fudong Wang;Christina Krucylak;Zheyu;Wang;Che Tan
- 通讯作者:Meikun Shen;Tianben Ding;Steven T. Hartman;Fudong Wang;Christina Krucylak;Zheyu;Wang;Che Tan
Measuring localization confidence for quantifying accuracy and heterogeneity in single-molecule super-resolution microscopy
测量定位置信度以量化单分子超分辨率显微镜中的准确性和异质性
- DOI:10.1117/12.2545033
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Mazidi, Hesam;Ding, Tianben;Nehorai, Arye;Lew, Matthew D.
- 通讯作者:Lew, Matthew D.
Deep-SMOLM: deep learning resolves the 3D orientations and 2D positions of overlapping single molecules with optimal nanoscale resolution
Deep-SMOLM:深度学习以最佳纳米级分辨率解析重叠单分子的 3D 方向和 2D 位置
- DOI:10.1364/oe.470146
- 发表时间:2022
- 期刊:
- 影响因子:3.8
- 作者:Wu, Tingting;Lu, Peng;Rahman, Md Ashequr;Li, Xiao;Lew, Matthew D.
- 通讯作者:Lew, Matthew D.
Towards optimal point spread function design for resolving closely spaced emitters in three dimensions
实现最佳点扩散函数设计以解决三维空间中紧密间隔的发射器
- DOI:10.1364/oe.472067
- 发表时间:2022
- 期刊:
- 影响因子:3.8
- 作者:Jusuf, James M.;Lew, Matthew D.
- 通讯作者:Lew, Matthew D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Lew其他文献
Matthew Lew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Nanoscale characterization of high-pressure superconductors using diamond quantum sensing
使用金刚石量子传感对高压超导体进行纳米级表征
- 批准号:
23H01835 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
GOALI: Exploiting Dark Spins for Color-Center-Based Nanoscale Sensing and Imaging
GOALI:利用暗自旋进行基于色心的纳米级传感和成像
- 批准号:
2203904 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Nanoscale Building Blocks for Sensing
用于传感的纳米级构建模块
- 批准号:
RGPIN-2019-05905 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Design of precision polymers by acoustic levitation for nanoscale gas sensing in medical diagnosis
声悬浮精密聚合物设计用于医疗诊断中的纳米级气体传感
- 批准号:
2825136 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Studentship
Quantum-Enabled Platform for Nanoscale Sensing
用于纳米级传感的量子平台
- 批准号:
575666-2022 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Nanoscale sensing and actuation with quantum emitters in 2D and 3D semiconductors
使用 2D 和 3D 半导体中的量子发射器进行纳米级传感和驱动
- 批准号:
RGPIN-2021-03059 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Nanoscale sensing and actuation with quantum emitters in 2D and 3D semiconductors
使用 2D 和 3D 半导体中的量子发射器进行纳米级传感和驱动
- 批准号:
RGPIN-2021-03059 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Nanoscale sensing and actuation with quantum emitters in 2D and 3D semiconductors
使用 2D 和 3D 半导体中的量子发射器进行纳米级传感和驱动
- 批准号:
DGECR-2021-00234 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Launch Supplement
QUERY: Integrated quantum and electron microscopy for nanoscale imaging and sensing
问题:用于纳米级成像和传感的集成量子和电子显微镜
- 批准号:
EP/V049623/1 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Nanoscale probes for sensing molecular functions in live cells
用于感测活细胞中分子功能的纳米级探针
- 批准号:
10623311 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别: