Nanoscale probes for sensing molecular functions in live cells
用于感测活细胞中分子功能的纳米级探针
基本信息
- 批准号:10623311
- 负责人:
- 金额:$ 63.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAction PotentialsAffectBiochemicalBiocompatible MaterialsBiologicalBiotechnologyCardiac MyocytesCell CommunicationCell physiologyCellsClassificationDevelopmentElectrodesElectrophysiology (science)EngineeringEnvironmentExtracellular MatrixFutureGenerationsGoalsIn VitroInterventionKnowledgeMechanicsMembraneMolecularMonitorNanotechnologyNanotopographyProcessProteinsRoleRuptureSignal TransductionSurfacebiological systemsdesignheart cellmechanical forcenanoelectrodesnanoscaleparent grantpatch clampsealsensorstem cellstooltransmission process
项目摘要
Project Summary / Abstract:
This MIRA proposal merges two distinct projects supported by R01GM128142, “The role of membrane
curvature in surface nanotopography-induced cell functions”, and R01GM125737, “Developing nanoscale
electrophysiology sensors for robust intracellular recording”. While the two projects focus on different biological
questions, the unifying theme is to develop nanoscale probes to elucidate the cellular machinery in the intricate
environment of living cells. In this proposal, we discuss topics along the lines of the parent grants, focusing on
the significance of the biological problems, our recent and evolving results, and directions for the future. For
the first project, the long-term goal is to understand how membrane curvature regulates biochemical signals
that are transmitted through the cell-matrix interface. At the cell-matrix interface, where the cells make physical
contact with extracellular matrices, the membrane may be locally deformed by matrix topography or
mechanical forces. As it remains a challenge to manipulate nanoscale membrane curvature in live cells, our
current understanding of how local membrane curvature affects signal transmission is limited. We propose to
use nanotechnology-based precision engineering to control interface membrane curvature in live cells. We
seek to understand how cellular processes are affected by membrane curvature and the underlying molecular
mechanisms. The knowledge gained will help us understanding how cells interact with extracellular matrix and
also help us designing biomaterials for better integration with cells. For the second project, we are developing
vertical nanoelectrodes into a robust and easy-to-use electrophysiology tool that can reliably achieve parallel
intracellular recording of cardiomyocytes with minimal perturbation. Simultaneous nanoelectrode and patch
clamp recordings on same cells confirmed that nanoelectrodes accurately record action potential waveforms
for classification and characterization of stem-cell-derived cardiomyocytes. These nanoelectrodes will enable
us to understand how in vitro interventions accelerate the maturation of stem-cell-derived cardiomyocyte.
Furthermore, nanoelectrodes provide an ideal tool for monitoring the generation and resealing of membrane
pores on cardiomyocytes that are prone to membrane rupture due to their large size and strong mechanical
contraction. We will use nanoelectrode to investigate how proteins participate in the membrane resealing
process. We hope to achieve a broad impact by combining the development of new tools with applications to
specific biological systems.
项目摘要/摘要:
该 MIRA 提案合并了 R01GM128142 支持的两个不同项目,“膜的作用
表面纳米形貌诱导的细胞功能中的曲率”,以及 R01GM125737,“开发纳米级
用于强大细胞内记录的电生理学传感器”。虽然这两个项目专注于不同的生物
问题的统一主题是开发纳米级探针来阐明复杂的细胞机制
活细胞的环境。在本提案中,我们讨论了与家长补助金相关的主题,重点是
生物学问题的重要性、我们最近和不断发展的结果以及未来的方向。为了
第一个项目,长期目标是了解膜曲率如何调节生化信号
通过细胞-基质接口传输。在细胞-基质界面处,细胞在此处进行物理
与细胞外基质接触,膜可能会因基质地形或
机械力。由于在活细胞中操纵纳米级膜曲率仍然是一个挑战,我们的
目前对局部膜曲率如何影响信号传输的理解是有限的。我们建议
使用基于纳米技术的精密工程来控制活细胞中的界面膜曲率。我们
试图了解细胞过程如何受到膜曲率和潜在分子的影响
机制。获得的知识将帮助我们了解细胞如何与细胞外基质相互作用以及
还帮助我们设计生物材料以更好地与细胞整合。对于第二个项目,我们正在开发
将垂直纳米电极转化为强大且易于使用的电生理学工具,可以可靠地实现并行
以最小的扰动对心肌细胞进行细胞内记录。同步纳米电极和贴片
对相同细胞的钳记录证实纳米电极准确记录动作电位波形
用于干细胞来源的心肌细胞的分类和表征。这些纳米电极将使
我们了解体外干预如何加速干细胞来源的心肌细胞的成熟。
此外,纳米电极为监测膜的产生和重新密封提供了理想的工具。
心肌细胞上的孔洞尺寸较大,机械力强,容易发生膜破裂。
收缩。我们将使用纳米电极来研究蛋白质如何参与膜重新密封
过程。我们希望通过将新工具的开发与应用程序相结合来实现广泛的影响
特定的生物系统。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative phase contrast imaging with a nonlocal angle-selective metasurface.
- DOI:10.1038/s41467-022-34197-6
- 发表时间:2022-12-21
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
Membrane curvature regulates the spatial distribution of bulky glycoproteins.
- DOI:10.1038/s41467-022-30610-2
- 发表时间:2022-06-02
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
Expansion Microscopy for Imaging the Cell-Material Interface.
用于成像细胞材料界面的膨胀显微镜。
- DOI:10.1021/acsnano.1c11015
- 发表时间:2022-05-24
- 期刊:
- 影响因子:17.1
- 作者:Nakamoto ML;Forró C;Zhang W;Tsai CT;Cui B
- 通讯作者:Cui B
Nanotechnology Enables Novel Modalities for Neuromodulation.
- DOI:10.1002/adma.202103208
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Yang X;McGlynn E;Das R;Paşca SP;Cui B;Heidari H
- 通讯作者:Heidari H
Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis.
- DOI:10.1021/acs.nanolett.1c01934
- 发表时间:2021-10-13
- 期刊:
- 影响因子:10.8
- 作者:Li X;Klausen LH;Zhang W;Jahed Z;Tsai CT;Li TL;Cui B
- 通讯作者:Cui B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bianxiao Cui其他文献
Bianxiao Cui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bianxiao Cui', 18)}}的其他基金
An electrophysiology platform that enables robust, scalable and long-term intracellular recording of cardiomyocytes
一个电生理学平台,能够对心肌细胞进行稳健、可扩展和长期的细胞内记录
- 批准号:
10500961 - 财政年份:2022
- 资助金额:
$ 63.75万 - 项目类别:
An electrophysiology platform that enables robust, scalable and long-term intracellular recording of cardiomyocytes
一个电生理学平台,能够对心肌细胞进行稳健、可扩展和长期的细胞内记录
- 批准号:
10641918 - 财政年份:2022
- 资助金额:
$ 63.75万 - 项目类别:
Label-free Optical Recording of Neuroelectric Activities
神经电活动的无标记光学记录
- 批准号:
10190148 - 财政年份:2021
- 资助金额:
$ 63.75万 - 项目类别:
Label-free Optical Recording of Neuroelectric Activities
神经电活动的无标记光学记录
- 批准号:
10361478 - 财政年份:2021
- 资助金额:
$ 63.75万 - 项目类别:
Label-free Optical Recording of Neuroelectric Activities
神经电活动的无标记光学记录
- 批准号:
10576312 - 财政年份:2021
- 资助金额:
$ 63.75万 - 项目类别:
Nanoscale probes for sensing molecular functions in live cells
用于感测活细胞中分子功能的纳米级探针
- 批准号:
10201347 - 财政年份:2021
- 资助金额:
$ 63.75万 - 项目类别:
Nanoscale probes for sensing molecular functions in live cells
用于感测活细胞中分子功能的纳米级探针
- 批准号:
10413984 - 财政年份:2021
- 资助金额:
$ 63.75万 - 项目类别:
Developing nanoscale electrophysiology sensors for robust intracellular recording
开发纳米级电生理学传感器以实现强大的细胞内记录
- 批准号:
9423772 - 财政年份:2017
- 资助金额:
$ 63.75万 - 项目类别:
Engineering external forces for manipulating cargo transport in live neurons
设计外力来操纵活神经元中的货物运输
- 批准号:
8358351 - 财政年份:2012
- 资助金额:
$ 63.75万 - 项目类别:
Imaging nerve growth factor signal transduction in live neurons
活神经元中神经生长因子信号转导的成像
- 批准号:
7223656 - 财政年份:2006
- 资助金额:
$ 63.75万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 63.75万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 63.75万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 63.75万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 63.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 63.75万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 63.75万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 63.75万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 63.75万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 63.75万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 63.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




