Nanoscale probes for sensing molecular functions in live cells

用于感测活细胞中分子功能的纳米级探针

基本信息

  • 批准号:
    10623311
  • 负责人:
  • 金额:
    $ 63.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary / Abstract: This MIRA proposal merges two distinct projects supported by R01GM128142, “The role of membrane curvature in surface nanotopography-induced cell functions”, and R01GM125737, “Developing nanoscale electrophysiology sensors for robust intracellular recording”. While the two projects focus on different biological questions, the unifying theme is to develop nanoscale probes to elucidate the cellular machinery in the intricate environment of living cells. In this proposal, we discuss topics along the lines of the parent grants, focusing on the significance of the biological problems, our recent and evolving results, and directions for the future. For the first project, the long-term goal is to understand how membrane curvature regulates biochemical signals that are transmitted through the cell-matrix interface. At the cell-matrix interface, where the cells make physical contact with extracellular matrices, the membrane may be locally deformed by matrix topography or mechanical forces. As it remains a challenge to manipulate nanoscale membrane curvature in live cells, our current understanding of how local membrane curvature affects signal transmission is limited. We propose to use nanotechnology-based precision engineering to control interface membrane curvature in live cells. We seek to understand how cellular processes are affected by membrane curvature and the underlying molecular mechanisms. The knowledge gained will help us understanding how cells interact with extracellular matrix and also help us designing biomaterials for better integration with cells. For the second project, we are developing vertical nanoelectrodes into a robust and easy-to-use electrophysiology tool that can reliably achieve parallel intracellular recording of cardiomyocytes with minimal perturbation. Simultaneous nanoelectrode and patch clamp recordings on same cells confirmed that nanoelectrodes accurately record action potential waveforms for classification and characterization of stem-cell-derived cardiomyocytes. These nanoelectrodes will enable us to understand how in vitro interventions accelerate the maturation of stem-cell-derived cardiomyocyte. Furthermore, nanoelectrodes provide an ideal tool for monitoring the generation and resealing of membrane pores on cardiomyocytes that are prone to membrane rupture due to their large size and strong mechanical contraction. We will use nanoelectrode to investigate how proteins participate in the membrane resealing process. We hope to achieve a broad impact by combining the development of new tools with applications to specific biological systems.
项目摘要/摘要:

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative phase contrast imaging with a nonlocal angle-selective metasurface.
  • DOI:
    10.1038/s41467-022-34197-6
  • 发表时间:
    2022-12-21
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
  • 通讯作者:
Membrane curvature regulates the spatial distribution of bulky glycoproteins.
  • DOI:
    10.1038/s41467-022-30610-2
  • 发表时间:
    2022-06-02
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
  • 通讯作者:
Expansion Microscopy for Imaging the Cell-Material Interface.
用于成像细胞材料界面的膨胀显微镜。
  • DOI:
    10.1021/acsnano.1c11015
  • 发表时间:
    2022-05-24
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Nakamoto ML;Forró C;Zhang W;Tsai CT;Cui B
  • 通讯作者:
    Cui B
Nanotechnology Enables Novel Modalities for Neuromodulation.
Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis.
  • DOI:
    10.1021/acs.nanolett.1c01934
  • 发表时间:
    2021-10-13
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Li X;Klausen LH;Zhang W;Jahed Z;Tsai CT;Li TL;Cui B
  • 通讯作者:
    Cui B
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bianxiao Cui其他文献

Bianxiao Cui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bianxiao Cui', 18)}}的其他基金

An electrophysiology platform that enables robust, scalable and long-term intracellular recording of cardiomyocytes
一个电生理学平台,能够对心肌细胞进行稳健、可扩展和长期的细胞内记录
  • 批准号:
    10500961
  • 财政年份:
    2022
  • 资助金额:
    $ 63.75万
  • 项目类别:
An electrophysiology platform that enables robust, scalable and long-term intracellular recording of cardiomyocytes
一个电生理学平台,能够对心肌细胞进行稳健、可扩展和长期的细胞内记录
  • 批准号:
    10641918
  • 财政年份:
    2022
  • 资助金额:
    $ 63.75万
  • 项目类别:
Label-free Optical Recording of Neuroelectric Activities
神经电活动的无标记光学记录
  • 批准号:
    10190148
  • 财政年份:
    2021
  • 资助金额:
    $ 63.75万
  • 项目类别:
Label-free Optical Recording of Neuroelectric Activities
神经电活动的无标记光学记录
  • 批准号:
    10361478
  • 财政年份:
    2021
  • 资助金额:
    $ 63.75万
  • 项目类别:
Label-free Optical Recording of Neuroelectric Activities
神经电活动的无标记光学记录
  • 批准号:
    10576312
  • 财政年份:
    2021
  • 资助金额:
    $ 63.75万
  • 项目类别:
Nanoscale probes for sensing molecular functions in live cells
用于感测活细胞中分子功能的纳米级探针
  • 批准号:
    10201347
  • 财政年份:
    2021
  • 资助金额:
    $ 63.75万
  • 项目类别:
Nanoscale probes for sensing molecular functions in live cells
用于感测活细胞中分子功能的纳米级探针
  • 批准号:
    10413984
  • 财政年份:
    2021
  • 资助金额:
    $ 63.75万
  • 项目类别:
Developing nanoscale electrophysiology sensors for robust intracellular recording
开发纳米级电生理学传感器以实现强大的细胞内记录
  • 批准号:
    9423772
  • 财政年份:
    2017
  • 资助金额:
    $ 63.75万
  • 项目类别:
Engineering external forces for manipulating cargo transport in live neurons
设计外力来操纵活神经元中的货物运输
  • 批准号:
    8358351
  • 财政年份:
    2012
  • 资助金额:
    $ 63.75万
  • 项目类别:
Imaging nerve growth factor signal transduction in live neurons
活神经元中神经生长因子信号转导的成像
  • 批准号:
    7223656
  • 财政年份:
    2006
  • 资助金额:
    $ 63.75万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 63.75万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 63.75万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 63.75万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 63.75万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 63.75万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 63.75万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 63.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了