CAREER: Representing and Classifying Enriched Quantum Symmetry
职业:丰富的量子对称性的表示和分类
基本信息
- 批准号:1654159
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symmetry plays an important role in mathematics and science. Classically, the symmetries of a mathematical object form a "group", which is a set with a binary operation such as the integers with addition. In recent decades, we have seen the emergence of quantum mathematical objects whose symmetries form a group-like structure called a "tensor category", which has a collection of objects with a binary fusion operation. Tensor categories are said to encode quantum symmetry: they describe topological phases of matter in physics, and they give us quantum invariants of knots and 3-dimensional surfaces. We are currently seeing the emergence of new mathematical objects which encode "enriched" quantum symmetry, which describe interfaces between 3-dimensional and 2-dimensional quantum systems. At this time, we have several competing formalisms. This project aims to unify these notions and produce exotic examples through classification. The educational component of this project includes undergraduate research and Summer schools on subfactors and quantum symmetry at the Ohio State University. The project will incorporate the principal investigators current learning materials and those developed for these programs into a book on subfactor theory. He will also collaborate with the STEAM Factory at Ohio State University to enhance general scientific and mathematical literacy in the community.This project has two main focuses: the representation and the classification of these new enriched quantum symmetries. Unitary fusion categories have objects whose dimensions are not necessarily integers, so representing unitary fusion categories requires von Neumann factors, whose modules have a notion of continuous dimension. In this project the principal investigator will use his previous experience in the classification of small index subfactors to classify quantum symmetries enriched in small unitary ribbon categories. This will study an enriched operator algebra theory to develop an enriched subfactor theory. The principal investigator will also develop the theory of bicommutant categories, which are a higher categorical analog of von Neumann algebras originally due to Henriques. These bicommutant categories have important connections to conformal field theory, and they are expected to be an important tool in the classification of enriched quantum symmetries.
对称性在数学和科学中起着重要的作用。 经典上,数学对象的对称性形成了一个“群”,它是一个具有二元运算的集合,例如具有加法的整数。近几十年来,我们已经看到了量子数学对象的出现,其对称性形成了一个称为“张量类别”的类群结构,它具有一个具有二元融合操作的对象集合。张量范畴被认为是量子对称性的编码:它们描述了物理学中物质的拓扑相,它们给了我们结点和三维表面的量子不变量。 我们目前看到新的数学对象的出现,它们编码了“丰富的”量子对称性,描述了三维和二维量子系统之间的界面。此时,我们有几个相互竞争的形式主义。这个项目旨在统一这些概念,并通过分类产生异国情调的例子。该项目的教育部分包括在俄亥俄州州立大学进行的关于子因子和量子对称性的本科生研究和暑期学校。 该项目将把主要研究人员目前的学习材料和那些为这些程序开发成一本关于子因子理论的书。 他还将与俄亥俄州州立大学的蒸汽工厂合作,提高社区的一般科学和数学素养。这个项目有两个主要重点:这些新的丰富的量子对称性的表示和分类。酉融合范畴的对象的维数不一定是整数,因此表示酉融合范畴需要冯诺依曼因子,其模有连续维数的概念。 在这个项目中,首席研究员将利用他以前在小指数子因子分类方面的经验来分类在小幺正带类别中丰富的量子对称性。这将研究一个丰富的算子代数理论,发展一个丰富的子因子理论。主要研究者还将发展理论的bicommutant类别,这是一个更高的范畴模拟冯诺依曼代数最初由于亨利克斯。这些双同变范畴与共形场论有着重要的联系,它们有望成为丰富量子对称性分类的重要工具。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Extended Haagerup fusion categories
扩展 Haagerup 融合类别
- DOI:10.24033/asens.2541
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:GROSSMAN, Pinhas;MORRISON, Scott;PENNEYS, David;PETERS, Emily;SNYDER, Noah
- 通讯作者:SNYDER, Noah
A categorical Connes’ $$\chi (M)$$
绝对 Connesâ $$chi (M)$$
- DOI:10.1007/s00208-023-02695-7
- 发表时间:2023
- 期刊:
- 影响因子:1.4
- 作者:Chen, Quan;Jones, Corey;Penneys, David
- 通讯作者:Penneys, David
An algebraic quantum field theoretic approach to toric code with gapped boundary
- DOI:10.1063/5.0149891
- 发表时间:2022-12
- 期刊:
- 影响因子:1.3
- 作者:Daniel Wallick
- 通讯作者:Daniel Wallick
The module embedding theorem via towers of algebras
通过代数塔的模块嵌入定理
- DOI:10.1016/j.jfa.2021.108965
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Coles, Desmond;Huston, Peter;Penneys, David;Srinivas, Srivatsa
- 通讯作者:Srinivas, Srivatsa
Representations of fusion categories and their commutants
融合类别及其交换子的表示
- DOI:10.1007/s00029-023-00841-2
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Henriques, André;Penneys, David
- 通讯作者:Penneys, David
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Penneys其他文献
Subfactors of index exactly 5
指数的子因子恰好为 5
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Masaki Izumi;Scott Morrison;David Penneys;Emily Peters;and Noah Snyder - 通讯作者:
and Noah Snyder
CALCULATING TWO-STRAND JELLYFISH RELATIONS
计算两股水母的关系
- DOI:
10.2140/pjm.2015.277.463 - 发表时间:
2013 - 期刊:
- 影响因子:0.6
- 作者:
David Penneys;E. Peters - 通讯作者:
E. Peters
A Planar Calculus for Infinite Index Subfactors
无限指数子因子的平面微积分
- DOI:
10.1007/s00220-012-1627-4 - 发表时间:
2011 - 期刊:
- 影响因子:2.4
- 作者:
David Penneys - 通讯作者:
David Penneys
Q-system completion for Csup⁎/sup 2-categories
Csup⁎/sup 2-范畴的 Q 系统完备性
- DOI:
10.1016/j.jfa.2022.109524 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:1.600
- 作者:
Quan Chen;Roberto Hernández Palomares;Corey Jones;David Penneys - 通讯作者:
David Penneys
1-Supertransitive Subfactors with Index at Most $${6\frac{1}{5}}$$
- DOI:
10.1007/s00220-014-2160-4 - 发表时间:
2014-09-18 - 期刊:
- 影响因子:2.600
- 作者:
Zhengwei Liu;Scott Morrison;David Penneys - 通讯作者:
David Penneys
David Penneys的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Penneys', 18)}}的其他基金
Conference: 2023 Great Plains Operator Theory Symposium
会议:2023年大平原算子理论研讨会
- 批准号:
2247732 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Quantum Symmetries: Subfactors, Topological Phases, and Higher Categories
量子对称性:子因子、拓扑相和更高类别
- 批准号:
2154389 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
2019 East Coast Operator Algebra Symposium
2019东海岸算子代数研讨会
- 批准号:
1936283 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Classifying subfactors and fusion categories
对子因素和融合类别进行分类
- 批准号:
1655912 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Classifying subfactors and fusion categories
对子因素和融合类别进行分类
- 批准号:
1500387 - 财政年份:2015
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
EAPSI: Multicolored Planar Algebras and Quadrilaterals of Subfactors
EAPSI:多彩平面代数和子因子四边形
- 批准号:
1015571 - 财政年份:2010
- 资助金额:
$ 42万 - 项目类别:
Fellowship Award
相似海外基金
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
- 批准号:
2345734 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Representing Coal Famine: Energy Crises and the British Press, 1870-1920
代表煤炭饥荒:能源危机和英国媒体,1870-1920 年
- 批准号:
2894901 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Studentship
Methodology for inferring directed graphs representing generative processes
推断表示生成过程的有向图的方法
- 批准号:
2789004 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Studentship
Representing, Debating & Protesting the Nation: The Visual Legacy of Sport
代表、辩论
- 批准号:
FT230100681 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
ARC Future Fellowships
Interdisciplinary approaches to representing workers conditions in performance
在绩效中体现员工状况的跨学科方法
- 批准号:
2890420 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Studentship
Enacting Climate Change Education through representing scientists’ practice
通过代表科学家的实践开展气候变化教育
- 批准号:
DP230101533 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Discovery Projects
Representing Human Anatomy for Computation and Communication: Synergistic Development of an Anatomical Ontology and Semantically-Augmented Anatomical Graphics
代表人体解剖学进行计算和通信:解剖本体论和语义增强解剖图形的协同发展
- 批准号:
10635511 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Exploring new indicators representing the hygroscopicity of atmospheric organic aerosol
探索代表大气有机气溶胶吸湿性的新指标
- 批准号:
23H00515 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CAREER: Representing, Discovering, and Assembling Motifs for Video Understanding
职业:表示、发现和组装视频理解的主题
- 批准号:
2238769 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Representing structural haplotypes and complex genetic variation in pan-genome graphs
表示泛基因组图中的结构单倍型和复杂的遗传变异
- 批准号:
10832934 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:














{{item.name}}会员




