CAREER: Defect-Modulated Energy Transport in Semiconducting Materials

职业:半导体材料中的缺陷调制能量传输

基本信息

  • 批准号:
    1654318
  • 负责人:
  • 金额:
    $ 56.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Non-technical Description: Rising energy demands and an increasing reliance on digital electronic technologies are driving an urgent need for greater efficiencies and improved performance in semiconducting materials. Control of energy motion by purposeful introduction of imperfections in otherwise ordered structures has shown promise, and a thorough understanding of this process would enable rational, application-specific materials design. However, directly watching energy move through materials in real time is exceedingly challenging owing to the associated very small and very fast scales (a billionth of a meter, and a millionth of a billionth of a second, respectively) at which it occurs. The principal investigator addresses this challenge through direct-imaging studies of laser-excited energy motion and conversion in defect-laden semiconducting materials. Investigations are conducted on combined ultrasmall and ultrafast scales such that detailed insight into the effects of individual material imperfections is generated. Closely integrated with the research component are various education and outreach activities with graduate and undergraduate students, including students from underrepresented groups, to the importance of semiconducting materials and characterization methods. This is accomplished through an industry-academia collaboration and establishment of an electron microscopy summer school program.Technical Description: Electronic, photonic, and mechanical properties of transition metal dichalcogenides (TMDs), a promising class of semiconducting materials, have been shown to be highly-sensitive to static and dynamic structural and morphological properties. However, a detailed understanding of the role of individual, atomic-scale defects on energy transport and conversion in these materials is lacking, owing to challenges of probing the combined nanometer-femtosecond scales without having to average signal over relatively large specimen areas. The overarching goal of the project is to elucidate mechanisms of defect-modulated energy transport and conversion in few- and single-layer TMDs at the combined atomic and femtosecond levels. A specific aim is to determine nucleation sites and preferential wave vectors of high-velocity, nanoscale coherent strain waves with respect to individual defects and to spatiotemporally map the entire photoinduced lattice response, spanning from initial electron-phonon coupling to acoustic phonon launch and decay. To accomplish this, structural dynamics within nanoscale regions of interest are studied with imaging and diffraction modalities of ultrafast electron microscopy (e.g., femtosecond electron imaging and ultrafast convergent-beam diffraction). This project will provide insight into fundamental processes of energy transport and conversion in semiconducting materials through generation of new knowledge via complementary morphological and crystallographic spatiotemporal measurements.
非技术描述:不断增长的能源需求和对数字电子技术的日益依赖正在推动对半导体材料更高效率和更高性能的迫切需求。通过有目的地在其他有序结构中引入缺陷来控制能量运动已经显示出希望,并且对这一过程的透彻理解将使合理的、针对具体应用的材料设计成为可能。然而,直接观察能量在真实的时间内通过物质的运动是非常具有挑战性的,因为它发生的尺度非常小和非常快(分别是十亿分之一米和十亿分之一秒)。首席研究员通过直接成像研究激光激发的能量运动和充满缺陷的半导体材料的转换来解决这一挑战。调查进行组合超小和超快尺度,使个别材料缺陷的影响产生详细的见解。与研究部分紧密结合的是各种教育和推广活动,与研究生和本科生,包括来自代表性不足群体的学生,半导体材料和表征方法的重要性。这是通过产学合作和建立电子显微镜暑期学校计划来实现的。技术描述:过渡金属二硫属化物(TMD)是一类有前途的半导体材料,其电子、光子和机械性能对静态和动态结构和形态特性高度敏感。然而,缺乏对这些材料中的能量传输和转换的单个原子级缺陷的作用的详细了解,这是由于探测组合的纳米-飞秒尺度而不必在相对较大的样品区域上平均信号的挑战。该项目的总体目标是阐明在原子和飞秒水平结合的缺陷调制的能量传输和转换的机制,在几个和单层TMD。一个具体的目标是确定成核网站和优先波矢量的高速,纳米级相干应变波相对于个别缺陷和时空映射的整个光致晶格响应,从初始的电子-声子耦合声学声子发射和衰减。为了实现这一点,利用超快电子显微镜的成像和衍射模式研究感兴趣的纳米级区域内的结构动力学(例如,飞秒电子成像和超快会聚束衍射)。该项目将通过补充形态学和晶体学时空测量产生新知识,深入了解半导体材料中能量传输和转换的基本过程。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low repetition-rate, high-resolution femtosecond transmission electron microscopy
  • DOI:
    10.1063/5.0128109
  • 发表时间:
    2022-11-14
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Flannigan,David J. J.;Curtis,Wyatt A. A.;Zhang,Yichao
  • 通讯作者:
    Zhang,Yichao
Direct Imaging of Localized Anisotropic Acoustic-Phonon Dynamics in MoS 2
MoS 2 中局域各向异性声子动力学的直接成像
  • DOI:
    10.1017/s1431927619011371
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zhang, Yichao;Flannigan, David J.
  • 通讯作者:
    Flannigan, David J.
Time-resolved TEM beyond fast detectors
超越快速探测器的时间分辨 TEM
  • DOI:
    10.1107/s0108767321092667
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Flannigan, David J.;Chen, Jialiang;Curtis, Wyatt;Du, Daniel X.;Engen, Paige E.;VandenBussche, Elisah J.;Zhang, Yichao
  • 通讯作者:
    Zhang, Yichao
Effects of Photoinduced Elastic Responses on Debye-Waller Temperature Measurements
光致弹性响应对德拜-沃勒温度测量的影响
  • DOI:
    10.1017/s1431927618009960
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Vanden Bussche, Elisah J.;Flannigan, David J.
  • 通讯作者:
    Flannigan, David J.
Stable Photoemission from the Wehnelt Aperture Surface in 4D Ultrafast Electron Microscopy
4D 超快电子显微镜中韦内尔特孔径表面的稳定光电发射
  • DOI:
    10.1093/micmic/ozad067.1103
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Willis, Simon A;Flannigan, David J
  • 通讯作者:
    Flannigan, David J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Flannigan其他文献

David Flannigan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 56.39万
  • 项目类别:
    Continuing Grant
Corneal epithelial cell bandage to treat persistent epithelial defect
角膜上皮细胞绷带治疗持续性上皮缺损
  • 批准号:
    MR/Y019385/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.39万
  • 项目类别:
    Research Grant
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
  • 批准号:
    2425965
  • 财政年份:
    2024
  • 资助金额:
    $ 56.39万
  • 项目类别:
    Standard Grant
Digital Platform for Defect-free Plastic Pipes Welding (DIGIPIPEWELD)
无缺陷塑料管道焊接数字平台 (DIGIPIPEWELD)
  • 批准号:
    10055000
  • 财政年份:
    2023
  • 资助金额:
    $ 56.39万
  • 项目类别:
    Collaborative R&D
Comparative single-cell analysis of disease-derived stem cells to identify the cell fate defect on the cell differentiation trajectory
对疾病来源的干细胞进行比较单细胞分析,以确定细胞分化轨迹上的细胞命运缺陷
  • 批准号:
    23H02466
  • 财政年份:
    2023
  • 资助金额:
    $ 56.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of novel polyglycolic acid material for regeneration of central airway defect
新型聚乙醇酸再生中央气道缺损材料的研制
  • 批准号:
    23K08291
  • 财政年份:
    2023
  • 资助金额:
    $ 56.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PFI-TT: Enhancing Manufacturing with Real-Time Defect Detection using mm-Wave Antenna Sensors
PFI-TT:使用毫米波天线传感器通过实时缺陷检测增强制造
  • 批准号:
    2234594
  • 财政年份:
    2023
  • 资助金额:
    $ 56.39万
  • 项目类别:
    Standard Grant
Characteristic control based on quantitative evaluation of nano-defect and defect-induced strain field in functional materials
基于功能材料纳米缺陷和缺陷诱发应变场定量评估的特性控制
  • 批准号:
    23KK0087
  • 财政年份:
    2023
  • 资助金额:
    $ 56.39万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
CalibXBatt - Calibration of XCT-Automatic Defect Recognition for Battery Inspection [10050292]
CalibXBatt - 用于电池检查的 XCT 自动缺陷识别校准 [10050292]
  • 批准号:
    10061803
  • 财政年份:
    2023
  • 资助金额:
    $ 56.39万
  • 项目类别:
    Collaborative R&D
Investigation of genetic variants and clinical risk factors associated with the progression rate of visual field defect in glaucoma
与青光眼视野缺损进展率相关的遗传变异和临床危险因素的调查
  • 批准号:
    23K09030
  • 财政年份:
    2023
  • 资助金额:
    $ 56.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了