CAREER: Utilizing Geometry for Statistical Learning and Inference
职业:利用几何进行统计学习和推理
基本信息
- 批准号:1654579
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of the project is to study the fundamental role of geometry in statistics and utilize it for learning and inference. More specifically, the investigator proposes to (1) study the role of geometry in statistical inference of complex data, in particular manifold-valued data that are now routinely collected in many fields of science and engineering; and (2) investigate the role of geometry in high-dimensional data analysis where the data generating process often centers around some lower-dimensional geometric space. The central theme of this program is that geometry is inherently present in the data with the geometry either known or to be learned, which should be utilized for efficient and reliable statistical learning and inference. The investigator aims to make fundamentally mathematical, statistical and algorithmic advances in complex data analysis and high-dimensional data analysis. In addition, the investigator proposes a comprehensive and detailed educational and training program for graduates students, undergraduate students as well as high school students that is integrated into the research program.Modern data of complex nature are routinely being collected in many scientific fields. One example is from diffusion tensor imaging (DTI) of neuroimaging, which obtains local information of neural activity through 3 by 3 positive definite matrices. DTI has clinical applications in the study and treatment of neurological disorders such as schizophrenia, as well as in detecting subtle abnormalities related to a variety of diseases (including stroke, multiple sclerosis, dyslexia). Other examples of complex data include digital images in machine vision, where a digital image can be represented by a set of landmarks, forming certain shapes. One may also encounter data that are stored in complex forms such as subspaces, surfaces, curves, and networks. The investigator will characterize the structure or geometry of complex data, and incorporate the geometry in developing valid statistical models for inference. In addition to complex data, it is also a common practice to collect high-dimensional data across many disciplines such as biology, public health and neuroscience. Being able to learn the often lower-dimensional geometry of the high-dimensional data is essential for accurate statistical inference and decision making in society. The investigator will utilize the geometry in developing valid statistical methods, which will be applied to medical data and neuroscience data, which has potential far-reaching impact in applied fields. In particular, the practical impact of the statistical methodologies from the project will be evaluated in the context of the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and an Attention Deficit Hyperactivity Disorder (ADHD) data set. By completing the proposed program, the investigator expects to better serve society and advance science by applying the developed models and methods in important fields such as medical diagnostics by enabling accurate prediction, classification or detection of diseases or brain disorders.
该项目的目标是研究几何在统计学中的基本作用,并利用它进行学习和推理。更具体地说,研究者建议(1)研究几何在复杂数据的统计推断中的作用,特别是现在在许多科学和工程领域常规收集的流形值数据;(2)研究几何在高维数据分析中的作用,其中数据生成过程通常以一些低维几何空间为中心。该计划的中心主题是几何本身存在于已知或待学习的几何数据中,应用于有效和可靠的统计学习和推理。研究者的目标是在复杂数据分析和高维数据分析方面取得根本性的数学、统计和算法进步。此外,研究者还为研究生、本科生和高中生提出了一个全面而详细的教育和培训计划,该计划与研究计划相结合。在许多科学领域中,经常收集复杂性质的现代数据。神经成像中的弥散张量成像(diffusion tensor imaging, DTI)就是一个例子,它通过3 × 3正定矩阵获得神经活动的局部信息。DTI在精神分裂症等神经系统疾病的研究和治疗以及检测与各种疾病(包括中风、多发性硬化症、阅读障碍)相关的细微异常方面具有临床应用。复杂数据的其他例子包括机器视觉中的数字图像,其中数字图像可以由一组形成特定形状的地标表示。人们还可能遇到以复杂形式存储的数据,如子空间、曲面、曲线和网络。研究者将描述复杂数据的结构或几何形状,并将几何形状纳入开发有效的统计模型进行推理。除了复杂的数据外,在生物学、公共卫生和神经科学等许多学科中收集高维数据也是一种常见的做法。能够学习高维数据的低维几何对于社会中准确的统计推断和决策至关重要。研究者将利用几何学开发有效的统计方法,这些方法将应用于医学数据和神经科学数据,在应用领域具有潜在的深远影响。特别是,该项目的统计方法的实际影响将在阿尔茨海默病神经影像学倡议(ADNI)数据库和注意缺陷多动障碍(ADHD)数据集的背景下进行评估。通过完成该计划,研究者希望将开发的模型和方法应用于医学诊断等重要领域,通过准确预测,分类或检测疾病或脑部疾病,更好地服务社会和推进科学。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Maximum pairwise Bayes factors for covariance structure testing
- DOI:10.1214/21-ejs1900
- 发表时间:2018-09
- 期刊:
- 影响因子:1.1
- 作者:Kyoungjae Lee;Lizhen Lin;D. Dunson
- 通讯作者:Kyoungjae Lee;Lizhen Lin;D. Dunson
Community Detection, Pattern Recognition, and Hypergraph-Based Learning: Approaches Using Metric Geometry and Persistent Homology
社区检测、模式识别和基于超图的学习:使用度量几何和持久同调的方法
- DOI:10.3233/faia200724
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Dong Quan Ngoc Nguyen, Lin Xing
- 通讯作者:Dong Quan Ngoc Nguyen, Lin Xing
Extrinsic Bayesian Optimization on Manifolds
- DOI:10.3390/a16020117
- 发表时间:2023-02
- 期刊:
- 影响因子:2.3
- 作者:Yi-Zheng Fang;Mu Niu;P. Cheung;Lizhen Lin
- 通讯作者:Yi-Zheng Fang;Mu Niu;P. Cheung;Lizhen Lin
Differential Geometry for Model Independent Analysis of Images and Other Non-Euclidean Data: Recent Developments
- DOI:10.1007/978-981-15-0298-9_1
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:R. Bhattacharya;Lizhen Lin
- 通讯作者:R. Bhattacharya;Lizhen Lin
Extrinsic Gaussian Processes for Regression and Classification on Manifolds
- DOI:10.1214/18-ba1135
- 发表时间:2017-06
- 期刊:
- 影响因子:4.4
- 作者:Lizhen Lin;Mu Niu;P. Cheung;D. Dunson
- 通讯作者:Lizhen Lin;Mu Niu;P. Cheung;D. Dunson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lizhen Lin其他文献
Large Sample Theory of Estimation in Parametric Models
参数模型中的大样本估计理论
- DOI:
10.1007/978-1-4939-4032-5_7 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
R. Bhattacharya;Lizhen Lin;V. Patrangenaru - 通讯作者:
V. Patrangenaru
Rejoinder To: Problems of Ruin and Survival in Economics: Applications of Limit Theorems in Probability
- DOI:
10.1007/s13571-013-0070-7 - 发表时间:
2013-10-11 - 期刊:
- 影响因子:0.700
- 作者:
Rabi Bhattacharya;Lizhen Lin;Mukul Majumdar - 通讯作者:
Mukul Majumdar
Multilevel network item response modelling for discovering differences between innovation and regular school systems in Korea
用于发现韩国创新学校系统和普通学校系统之间差异的多级网络项目响应模型
- DOI:
10.1111/rssc.12569 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ick Hoon Jin;M. Jeon;M. Schweinberger;Jonghyun Yun;Lizhen Lin - 通讯作者:
Lizhen Lin
Fréchet Means and Nonparametric Inference on Non-Euclidean Geometric Spaces
非欧几何空间上的 Fréchet 均值和非参数推理
- DOI:
10.1007/978-1-4939-4032-5_12 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
R. Bhattacharya;Lizhen Lin;V. Patrangenaru - 通讯作者:
V. Patrangenaru
Lizhen Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lizhen Lin', 18)}}的其他基金
CDS&E-MSS: Geometric and Statistical Foundations for Modeling Cell Shapes
CDS
- 批准号:
1854779 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Big Data, It's Not So Big: Exploiting Low-Dimensional Geometry for Learning and Inference
BIGDATA:协作研究:F:大数据,它并不是那么大:利用低维几何进行学习和推理
- 批准号:
1663870 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CBMS Conference: Topological Data Analysis: Topology, Geometry and Statistics, May 23-27, 2016; Austin, TX
CBMS会议:拓扑数据分析:拓扑、几何和统计,2016年5月23-27日;
- 批准号:
1543841 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Big Data, It's Not So Big: Exploiting Low-Dimensional Geometry for Learning and Inference
BIGDATA:协作研究:F:大数据,它并不是那么大:利用低维几何进行学习和推理
- 批准号:
1546331 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Cooperative Agreement
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Utilizing Wrap Around Mentorship and Virtual Reality to Prepare and Sustain STEM Teachers in Rural High-Need Schools
利用环绕式指导和虚拟现实来培养和维持农村高需求学校的 STEM 教师
- 批准号:
2344941 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Utilizing Interactive Videos to Assist Self and Peer Assessment of Students' Speaking
利用互动视频辅助学生口语自评和互评
- 批准号:
24K16138 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Application of the virus-like particle (VLP) technology in the development of anti-tick vaccine, utilizing novel salivary proteins from Haemaphysalis longicornis ticks.
利用长角血蜱的新型唾液蛋白,应用病毒样颗粒(VLP)技术开发抗蜱疫苗。
- 批准号:
24K18027 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Utilizing Lego Serious Play (LSP) to aid Japanese Tertiary Students in the enhancement of Intercultural Literacy and Identity Formation fostering Modern Employability Skills
利用乐高严肃游戏(LSP)帮助日本大学生提高跨文化素养和身份形成,培养现代就业技能
- 批准号:
24K05636 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Understanding and Directing Selectivity in Functionalizations of Strong Covalent Bonds Utilizing Coordination-Sphere Effects
职业:利用配位球效应理解和指导强共价键官能化的选择性
- 批准号:
2338438 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
- 批准号:
2340482 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Field-based Undergraduate Training: Utilizing Research for Equity (FUTURE) in Biology
实地本科生培训:利用生物学研究实现公平(未来)
- 批准号:
2329523 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Pharmacokinetic analysis of antibody drug conjugate in tumor cells utilizing synchrotron soft X-ray imaging
利用同步加速器软 X 射线成像对肿瘤细胞中抗体药物偶联物进行药代动力学分析
- 批准号:
23H03716 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)