CBMS Conference: Topological Data Analysis: Topology, Geometry and Statistics, May 23-27, 2016; Austin, TX

CBMS会议:拓扑数据分析:拓扑、几何和统计,2016年5月23-27日;

基本信息

  • 批准号:
    1543841
  • 负责人:
  • 金额:
    $ 3.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

This award will support a 5-day conference in topological data analysis at the University of Texas at Austin in the spring of 2016. Topological data analysis (TDA) has recently emerged as an active new field of research, which has generated great interest across mathematics, statistics, computer science, machine learning, and electrical engineering communities. TDA is being applied to image analysis, neuroscience, networks analysis, morphology, genetics,cancer research and other problems. The interdisciplinary nature of TDA naturally leads to the literature and the active researchers being scattered across different fields. This lack of a cohesive disciplinary home makes it difficult for junior researchers and in particular graduate students from statistics to obtain exposure to the field. The proposed workshop strives to fill this gap by focusing on tutorial and overview talks on topological data analysis and providing hands-on data analysis sessions. The conference will feature Professor Sayan Mukherjee from Duke University as the principal lecturer, and five additional invited speakers. The goal of the conference is to introduce graduate students and junior researchers to TDA, an active new field, which lies at the exciting intersection of topology, geometry, and statistics. This conference will also serve as an opportunity to foster research collaborations and chart possible future directions for research.The program will provide an overview of how geometry and topology can be used for statistical inference. The proposed outline develops a framework for how geometry and topology is used for some common tasks in statistical inference including mixture models, modeling surfaces and shapes, extensions of spectral clustering, as well as machine learning aspects such as semisupervised learning. There will be some applied and data analysis aspects to the lecture where some common Topological Data Analysis codes will be used to model shape data, specifically computerized tomography (CT) scans of bones and organs. Applied aspects of the program will include applications of the methodology developed in quantitative genetics, statistical genetics, as well as computer vision applications. Another component of the program is focusing on the role of geometry in statistics. Some of the invited speakers such as Professors Rabi Bhattacharya and Susan Holmes will deliver lectures on this topics.
该奖项将支持2016年春季在德克萨斯大学奥斯汀分校举行的为期5天的拓扑数据分析会议。拓扑数据分析(TDA)最近成为一个活跃的新研究领域,引起了数学、统计学、计算机科学、机器学习和电气工程社区的极大兴趣。TDA正被应用于图像分析、神经科学、网络分析、形态学、遗传学、癌症研究等问题。TDA的跨学科性质自然导致文献和活跃的研究人员分散在不同的领域。缺乏一个有凝聚力的学科家庭使得初级研究人员,特别是统计学研究生很难接触到这个领域。本次研讨会旨在通过关注拓扑数据分析的教程和概述讲座以及提供实际操作的数据分析会议来填补这一空白。会议将邀请杜克大学的Sayan Mukherjee教授担任首席讲师,并邀请另外五位演讲者。会议的目标是向研究生和初级研究人员介绍TDA,这是一个活跃的新领域,它位于令人兴奋的拓扑,几何和统计学的交叉点。本次会议还将为促进研究合作和规划未来可能的研究方向提供机会。该计划将提供几何和拓扑如何用于统计推断的概述。提出的大纲为几何和拓扑如何用于统计推断中的一些常见任务开发了一个框架,包括混合模型,曲面和形状建模,光谱聚类的扩展以及机器学习方面,如半监督学习。本课程将涉及一些应用和数据分析方面的内容,其中将使用一些常见的拓扑数据分析代码来建模形状数据,特别是骨骼和器官的计算机断层扫描(CT)。该计划的应用方面将包括定量遗传学,统计遗传学以及计算机视觉应用中开发的方法的应用。该计划的另一个组成部分是关注几何在统计学中的作用。一些受邀的演讲者,如Rabi Bhattacharya教授和Susan Holmes教授将会就这一主题发表演讲。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lizhen Lin其他文献

Large Sample Theory of Estimation in Parametric Models
参数模型中的大样本估计理论
  • DOI:
    10.1007/978-1-4939-4032-5_7
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Bhattacharya;Lizhen Lin;V. Patrangenaru
  • 通讯作者:
    V. Patrangenaru
Rejoinder To: Problems of Ruin and Survival in Economics: Applications of Limit Theorems in Probability
Multilevel network item response modelling for discovering differences between innovation and regular school systems in Korea
用于发现韩国创新学校系统和普通学校系统之间差异的多级网络项目响应模型
Nonparametric Inference for Bioassay
生物测定的非参数推理
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lizhen Lin
  • 通讯作者:
    Lizhen Lin
Fréchet Means and Nonparametric Inference on Non-Euclidean Geometric Spaces
非欧几何空间上的 Fréchet 均值和非参数推理
  • DOI:
    10.1007/978-1-4939-4032-5_12
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Bhattacharya;Lizhen Lin;V. Patrangenaru
  • 通讯作者:
    V. Patrangenaru

Lizhen Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lizhen Lin', 18)}}的其他基金

CDS&E-MSS: Geometric and Statistical Foundations for Modeling Cell Shapes
CDS
  • 批准号:
    1854779
  • 财政年份:
    2019
  • 资助金额:
    $ 3.75万
  • 项目类别:
    Standard Grant
CAREER: Utilizing Geometry for Statistical Learning and Inference
职业:利用几何进行统计学习和推理
  • 批准号:
    1654579
  • 财政年份:
    2017
  • 资助金额:
    $ 3.75万
  • 项目类别:
    Continuing Grant
BIGDATA: Collaborative Research: F: Big Data, It's Not So Big: Exploiting Low-Dimensional Geometry for Learning and Inference
BIGDATA:协作研究:F:大数据,它并不是那么大:利用低维几何进行学习和推理
  • 批准号:
    1663870
  • 财政年份:
    2016
  • 资助金额:
    $ 3.75万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Big Data, It's Not So Big: Exploiting Low-Dimensional Geometry for Learning and Inference
BIGDATA:协作研究:F:大数据,它并不是那么大:利用低维几何进行学习和推理
  • 批准号:
    1546331
  • 财政年份:
    2015
  • 资助金额:
    $ 3.75万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: ICMS: Topological Quantum Computing
会议:ICMS:拓扑量子计算
  • 批准号:
    2327208
  • 财政年份:
    2023
  • 资助金额:
    $ 3.75万
  • 项目类别:
    Standard Grant
Conference: Algebraic and topological interplay of algebraic varieties
会议:代数簇的代数和拓扑相互作用
  • 批准号:
    2304894
  • 财政年份:
    2023
  • 资助金额:
    $ 3.75万
  • 项目类别:
    Standard Grant
Conference on Algebraic Topology and Topological Data Analysis
代数拓扑与拓扑数据分析会议
  • 批准号:
    2223905
  • 财政年份:
    2022
  • 资助金额:
    $ 3.75万
  • 项目类别:
    Standard Grant
Conference on Quantum Symmetries: Tensor Categories, Topological Quantum Field Theories, and Vertex Algebras
量子对称会议:张量范畴、拓扑量子场论和顶点代数
  • 批准号:
    2228888
  • 财政年份:
    2022
  • 资助金额:
    $ 3.75万
  • 项目类别:
    Standard Grant
CBMS Conference on Topological Data Analysis and Persistence Theory
CBMS拓扑数据分析与持久性理论会议
  • 批准号:
    2132497
  • 财政年份:
    2021
  • 资助金额:
    $ 3.75万
  • 项目类别:
    Standard Grant
Student Support to 5th International Conference on Phonomic Crystals/Metamaterials, Phonon Transport/Coupling & Topological Phonomics; Tucson, Arizona; 2-7 June 2019
学生对第五届声学晶体/超材料、声子传输/耦合国际会议的支持
  • 批准号:
    1902900
  • 财政年份:
    2018
  • 资助金额:
    $ 3.75万
  • 项目类别:
    Standard Grant
CBMS Conference: Topological Methods in Machine Learning and Artificial Intelligence
CBMS 会议:机器学习和人工智能中的拓扑方法
  • 批准号:
    1836362
  • 财政年份:
    2018
  • 资助金额:
    $ 3.75万
  • 项目类别:
    Standard Grant
CBMS Conference: Dyson-Schwinger Equations, Topological Expansions, and Random Matrices
CBMS 会议:Dyson-Schwinger 方程、拓扑展开式和随机矩阵
  • 批准号:
    1642595
  • 财政年份:
    2017
  • 资助金额:
    $ 3.75万
  • 项目类别:
    Standard Grant
CBMS Regional Research Conference on Topological Data Analysis
CBMS 拓扑数据分析区域研究会议
  • 批准号:
    1642637
  • 财政年份:
    2017
  • 资助金额:
    $ 3.75万
  • 项目类别:
    Standard Grant
Lorentz Center Conference on KK-Theory, Gauge Theory, and Topological Phases
洛伦兹中心 KK 理论、规范理论和拓扑相会议
  • 批准号:
    1664597
  • 财政年份:
    2017
  • 资助金额:
    $ 3.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了