CAREER: Microwave-Assisted Ionic Liquid Etching of Colloidal III-V Semiconductor Nanocrystals

职业:胶体 III-V 半导体纳米晶体的微波辅助离子液体蚀刻

基本信息

  • 批准号:
    1654793
  • 负责人:
  • 金额:
    $ 70.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Semiconductors, which comprise a class of solid materials with electrical conductivity intermediate between that of an insulator and that of a conductor, form the basic components of electronic circuits, light emitting diodes and sensor devices. Professor McLaurin employs microwaves to develop methods for semiconductor synthesis with the goal of more efficiently producing safer, superior nanocrystal (NC) materials known as quantum dots. Despite existing for more than 20 years, quantum dots are dominated by toxic heavy metal components and inefficient production methods. Dr. McLaurin's method of microwave-assisted ionic liquid (MAIL) etching provides a unique, reproducible approach for the production of high quality NC materials, such as indium phosphide (InP), that avoids toxic heavy metals and inefficient production methods. Broader impacts of the research are apparent in environmental and energy technology gains. High-quality InP NCs open up avenues for applications in energy-efficient lighting and low-cost solar cells, helping address current uncertainties in the global energy landscape. The absence of toxic heavy metals also highlights additional possibilities for using these materials in biological sensing and imaging. Dr. McLaurin provides broader educational impacts in her laboratory and demonstration modules designed for middle, high school, and undergraduate students. Partnership with the Kansas Louis Stokes Alliance for Minority Participation ensures broad diversity in her student base. Microwave ovens are a well-established home appliance, providing a good introduction to students of all ages. These simple microwave-based experiments relevant to nanotechnology and renewable energy applications offer hands-on experience with technologies central to our economy, ensuring future generations have relevant skills to be competitive in our global job environment.This award by the Macromolecular, Supramolecular and Nanochemistry (MSN) Program supports the research program of Professor Emily McLaurin at Kansas State University (KSU) to devise mechanisms of semiconductor nanocrystal (NC) etching, and obtain new protocols for acquiring NCs with specific properties. Results from this research improve the scientific value of microwave-assisted syntheses of colloidal toxic heavy metal (Pb, Cd, Hg)-free NCs through development of new methodologies and by detailing mechanistic aspects of the reactions that explain observed advantages over conventional syntheses. Microwave-assisted ionic liquid (MAIL) etching provides access to new reaction space variables, including unique, reproducible pathways for production of high quality NCs by balancing in situ etching with NC growth. Broader impacts of the research are apparent in environmental and energy technology gains. Mechanistic studies of etching aid in obtaining InP NCs with tunable properties, which can transform the area of colloidal semiconductor NCs synthesis by demonstrating the utility and advantages of microwave-assisted methods. Information about the systems studied, including the etching mechanisms, is readily applicable to other materials. Dr. McLaurin provides broader educational impacts in her laboratory and demonstration modules designed for middle, high school, and undergraduate students. Including more women and underrepresented minorities in science and engineering disciplines is key to attracting new talent to STEM fields. Dr. McLaurin tackles this challenge through the design of accessible, interesting lab activities for the KSU summer programs and their integration with curriculum at the undergraduate (4-year and community college) levels. Modules integrating nanomaterials with microwave chemistry and renewable energy applications combine fundamental scientific knowledge with real-world applications creating a meaningful educational experience.
半导体包括导电性介于绝缘体和导体之间的一类固体材料,形成电子电路、发光二极管和传感器装置的基本组件。 McLaurin教授利用微波开发半导体合成方法,目的是更有效地生产更安全、上级纳米(NC)材料,即量子点。尽管量子点已经存在了20多年,但其主要成分是有毒的重金属成分和低效的生产方法。McLaurin博士的微波辅助离子液体(MAIL)蚀刻方法为生产高质量NC材料(如磷化铟(InP))提供了一种独特的、可重复的方法,避免了有毒重金属和低效的生产方法。这项研究的更广泛影响在环境和能源技术收益方面是显而易见的。 高质量的InP NCs为节能照明和低成本太阳能电池的应用开辟了道路,有助于解决当前全球能源格局的不确定性。没有有毒重金属也突出了在生物传感和成像中使用这些材料的额外可能性。McLaurin博士在她的实验室和为初中,高中和本科生设计的演示模块中提供了更广泛的教育影响。 与堪萨斯路易斯斯托克斯少数民族参与联盟的伙伴关系确保了她的学生基础的广泛多样性。微波炉是一种公认的家用电器,为所有年龄段的学生提供了一个很好的介绍。 这些与纳米技术和可再生能源应用相关的简单微波实验提供了对我们经济至关重要的技术的实践经验,确保后代拥有相关技能,在我们的全球就业环境中具有竞争力。超分子和纳米化学(MSN)计划支持艾米丽麦克劳林教授在堪萨斯州立大学(KSU)的研究计划设计半导体光刻(NC)蚀刻的机制,并获得用于获得具有特定性质的NC的新协议。从这项研究的结果提高了微波辅助合成的胶体有毒重金属(铅,镉,汞)-免费NC的科学价值,通过开发新的方法,并通过详细的机制方面的反应,解释观察到的优势,比传统的合成。微波辅助离子液体(MAIL)蚀刻提供了新的反应空间变量,包括通过平衡原位蚀刻与NC生长来生产高质量NC的独特、可重复的途径。 这项研究的更广泛影响在环境和能源技术收益方面是显而易见的。 蚀刻助剂在获得具有可调性质的InP NCs中的机理研究,其可以通过展示微波辅助方法的实用性和优点来改变胶体半导体NCs合成的领域。关于所研究的系统的信息,包括蚀刻机制,很容易适用于其他材料。 McLaurin博士在她的实验室和为初中,高中和本科生设计的演示模块中提供了更广泛的教育影响。 在科学和工程学科中纳入更多女性和代表性不足的少数民族是吸引新人才进入STEM领域的关键。McLaurin通过为KSU暑期课程设计方便,有趣的实验室活动以及与本科(4年制和社区学院)课程的整合来应对这一挑战。 将纳米材料与微波化学和可再生能源应用集成的模块将联合收割机基础科学知识与实际应用相结合,创造了一种有意义的教育体验。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recent advances in colloidal indium phosphide quantum dot production
胶体磷化铟量子点生产的最新进展
InP Nanocrystals with Color-Tunable Luminescence by Microwave-Assisted Ionic-Liquid Etching
  • DOI:
    10.1021/acs.chemmater.6b04457
  • 发表时间:
    2017-03-14
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Siramdas, Raghavender;McLaurin, Emily J.
  • 通讯作者:
    McLaurin, Emily J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily McLaurin其他文献

Emily McLaurin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Microwave assisted photocatalysis and heterogeneous catalysis for cleaning with air
微波辅助光催化和多相催化用于空气清洁
  • 批准号:
    2882933
  • 财政年份:
    2023
  • 资助金额:
    $ 70.02万
  • 项目类别:
    Studentship
MW-DESP: An integrated approach to ethanol production from rice straw via microwave-assisted deep eutectic solvent pretreatment and sequential...
MW-DESP:通过微波辅助低共熔溶剂预处理和顺序处理从稻草生产乙醇的综合方法...
  • 批准号:
    EP/Y010299/1
  • 财政年份:
    2023
  • 资助金额:
    $ 70.02万
  • 项目类别:
    Fellowship
Excellence in Research: Microwave-Assisted In-Situ Hydrogen Generation: Experimentation, Simulation, and Optimization
卓越的研究:微波辅助原位制氢:实验、模拟和优化
  • 批准号:
    2247676
  • 财政年份:
    2023
  • 资助金额:
    $ 70.02万
  • 项目类别:
    Standard Grant
Enabling the circular economy: Microwave Assisted Pyrolysis of plastic film and flexible packaging
实现循环经济:塑料薄膜和软包装的微波辅助热解
  • 批准号:
    10017024
  • 财政年份:
    2022
  • 资助金额:
    $ 70.02万
  • 项目类别:
    Collaborative R&D
Microwave-assisted pyrolysis of biomass in a pilot scale fluidized bed reactor
中试规模流化床反应器中微波辅助生物质热解
  • 批准号:
    569704-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 70.02万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development and Experimental Verification of Fundamental Models to Enable Implementation of Microwave-Assisted Freeze Drying
实现微波辅助冷冻干燥的基本模型的开发和实验验证
  • 批准号:
    10684767
  • 财政年份:
    2022
  • 资助金额:
    $ 70.02万
  • 项目类别:
Microwave-assisted catalytic gas reforming technology for clean distributed hydrogen
微波辅助催化气体重整清洁分布式氢技术
  • 批准号:
    570722-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 70.02万
  • 项目类别:
    Alliance Grants
Machine-learning-assisted multi-frequency microwave imaging
机器学习辅助的多频微波成像
  • 批准号:
    574449-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 70.02万
  • 项目类别:
    University Undergraduate Student Research Awards
Microwave-assisted plasma synthesis of CO2 free hydrogen and graphene
微波辅助等离子体合成无二氧化碳氢和石墨烯
  • 批准号:
    575510-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 70.02万
  • 项目类别:
    Alliance Grants
Development and Experimental Verification of Fundamental Models to Enable Implementation of Microwave-Assisted Freeze Drying
实现微波辅助冷冻干燥的基本模型的开发和实验验证
  • 批准号:
    10602061
  • 财政年份:
    2022
  • 资助金额:
    $ 70.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了