Excellence in Research: Microwave-Assisted In-Situ Hydrogen Generation: Experimentation, Simulation, and Optimization
卓越的研究:微波辅助原位制氢:实验、模拟和优化
基本信息
- 批准号:2247676
- 负责人:
- 金额:$ 46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This collaborative experimental and simulation-based research project aims to develop a new electromagnetic (EM)/microwave-assisted catalytic reaction process for in-situ hydrogen (H2) generation that takes place entirely within petroleum reservoir formations. This research is motivated by the urgent need to decarbonize our nation’s energy resources and to advance technologies that can lead to a practical hydrogen economy. Existing H2 generation processes suffer from either the high cost of water electrolysis or the high CO2 emissions generated by steam methane (natural gas) reforming. In this project, a radically different alternative is proposed to generate H2 within abandoned sandstone oil reservoirs so that only H2 is extracted at the surface, while all carbon-containing compounds (including CO2) are permanently locked within the reservoirs. The key innovation of this approach is that EM/microwave power will be radiated into the underground reaction region to heat and sustain the thermochemical reactions producing H2. Natural catalysts in sandstone rock minerals will play a synergistic role by increasing the efficiency of the H2 production reactions; alternative catalysts also will be investigated as a means of further increasing H2 production. Experimentally validated computer simulations of the reactions and gas-flow processes within the underground formations will play a crucial role in understanding this H2 production process and for the ultimate oil reservoir-scale implementations. Within this research program, two graduate students will be co-advised and mentored by the PIs. Research outcomes will be disseminated to the public though publications and presentations.This experimental/simulation-based research collaboration will explore an in-situ, EM/microwave-assisted H2 production process contained within a petroleum reservoir as an alternative to the steam methane reforming/water-gas shift process used to produce most of the domestic H2 generated today. The research will study fundamental rock-hydrocarbon-water-catalyst interactions controlled by the coupled microwave irradiation, heat transfer, fluid flows, and reactions that are responsible for the conversion of hydrocarbons and water to H2 under microwave/RF heating. Laboratory experiments under controlled microwave heating and using catalysts found naturally in reservoir rock formations will be conducted to generate reaction kinetics models describing H2 production rates. The reaction kinetics expressions will be combined with multiphase descriptions of gas and fluid transport though the porous reservoir rock formations, as well as electromagnetic (EM) radiation propagation and heating phenomena, to create a complete and validated multiscale and multiphysics simulator. This simulator will be used for a range of studies, from investigating the distribution and time-evolution of hotspots under EM heating to reservoir-scale optimization studies. Because of the exceedingly high computational cost of the latter, novel graph neural network (GNN)-based domain decomposition methods will be developed to facilitate parallelization of the large-scale dynamic simulations, resulting in a seamless integration of rigorous physics-driven methods and data-driven methods. Overall, the research efforts will (1) elucidate rock-hydrocarbon-water-catalyst interactions under EM/microwave heating and develop new kinetic models for oil conversion to H2 generation; (2) develop neural network assisted high performance simulation methods for nonlinear and multiphysics descriptions of EM-thermal interaction; (3) identify the rate-limiting processes for H2 generation; and (4) identify pathways to scale-up of experimental results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该合作实验和基于模拟的研究项目旨在开发一种新的电磁(EM)/微波辅助催化反应过程,用于完全在石油储层内进行的原位氢气(H2)生成。这项研究的动机是迫切需要脱碳我们国家的能源资源和先进的技术,可以导致一个实际的氢经济。现有的H2产生方法受到水电解的高成本或蒸汽甲烷(天然气)重整产生的高CO2排放的影响。在该项目中,提出了一种完全不同的替代方案,在废弃的砂岩油藏中产生H2,以便在地表仅提取H2,而所有含碳化合物(包括CO2)永久锁定在油藏中。这种方法的关键创新在于,电磁/微波功率将辐射到地下反应区,以加热和维持产生H2的热化学反应。砂岩岩石矿物中的天然催化剂将通过提高H2生产反应的效率发挥协同作用;还将研究替代催化剂作为进一步提高H2产量的手段。实验验证的地下地层内的反应和气体流动过程的计算机模拟将在理解这种H2生产过程和最终的石油天然气规模实施中发挥关键作用。在这项研究计划中,两名研究生将由PI共同提供建议和指导。研究成果将通过出版物和演示文稿向公众传播。这种基于实验/模拟的研究合作将探索一种包含在石油储层中的原位EM/微波辅助H2生产过程,作为蒸汽甲烷重整/水煤气变换过程的替代方案,该过程用于生产当今大部分国内产生的H2。该研究将研究由耦合微波辐射,传热,流体流动和反应控制的基本岩石-烃-水-催化剂相互作用,这些反应负责在微波/RF加热下将烃和水转化为H2。将进行受控微波加热下的实验室实验,并使用储层岩层中天然存在的催化剂,以生成描述H2生产速率的反应动力学模型。反应动力学表达式将结合多相描述的气体和流体传输通过多孔储层岩层,以及电磁(EM)辐射传播和加热现象,以创建一个完整的和验证的多尺度和多物理场模拟器。该模拟器将用于一系列研究,从研究电磁加热下热点的分布和时间演变到储层规模优化研究。由于后者的计算成本非常高,新的基于图神经网络(GNN)的区域分解方法将被开发,以促进大规模动态模拟的并行化,从而实现严格的物理驱动方法和数据驱动方法的无缝集成。总体而言,研究工作将(1)阐明电磁/微波加热下岩石-烃-水-催化剂的相互作用,并开发新的石油转化为H2的动力学模型;(2)开发神经网络辅助的高性能模拟方法,用于电磁-热相互作用的非线性和多物理描述;(3)识别H2生成的限速过程;以及(4)确定扩大实验结果的途径。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Su Yan其他文献
Compressive behavior and electronic properties of ammonia ice: a fi rst-principles study
氨冰的压缩行为和电子特性:第一性原理研究
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.9
- 作者:
Yu Xueke;Jiang Xue;Su Yan;Zhao Jijun - 通讯作者:
Zhao Jijun
Nanoprobe-Initiated Enzymatic Polymerization for Highly Sensitive Electrochemical DNA Detection
纳米探针引发的酶聚合用于高灵敏电化学 DNA 检测
- DOI:
10.1021/acsami.5b08817 - 发表时间:
2015 - 期刊:
- 影响因子:9.5
- 作者:
Wan Ying;Wang Pengjuan;Su Yan;Wang Lihua;Pan Dun;Aldalbahi Ali;Yang Shulin;Zuo Xiaolei - 通讯作者:
Zuo Xiaolei
Warming Affects Soil Nitrogen Mineralization via Changes in Root Exudation and Associated Soil Microbial Communities in a Subalpine Tree Species Abies fabri
变暖通过亚高山冷杉根系分泌物和相关土壤微生物群落的变化影响土壤氮矿化
- DOI:
10.1007/s42729-021-00657-z - 发表时间:
2021 - 期刊:
- 影响因子:3.9
- 作者:
Liu Weilong;Jiang Yonglei;Su Yan;Smoak Joseph M.;Duan Baoli - 通讯作者:
Duan Baoli
A neurodynamic approach to compute the generalized eigenvalues of symmetric positive matrix pair
计算对称正矩阵对广义特征值的神经动力学方法
- DOI:
10.1016/j.neucom.2019.06.016 - 发表时间:
2019 - 期刊:
- 影响因子:6
- 作者:
Jiqiang Feng;Su Yan;Sitian Qin;Wen Han - 通讯作者:
Wen Han
The model and stress analysis of self-doping SiGe/Si multi-quantum wells applied in uncooled infrared focal plane array
非制冷红外焦平面阵列自掺杂SiGe/Si多量子阱模型及应力分析
- DOI:
10.1016/j.ijleo.2019.163285 - 发表时间:
2019 - 期刊:
- 影响因子:3.1
- 作者:
Jiang Bo;Fang Zhong;Zhou Tong;Zhu Xinhua;Su Yan - 通讯作者:
Su Yan
Su Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Su Yan', 18)}}的其他基金
CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
- 批准号:
2238124 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
Research Initiation Award: Theoretical and Computational Methods for Robust Retrieval of Effective Electromagnetic Properties of Random Composite Materials
研究启动奖:鲁棒检索随机复合材料有效电磁特性的理论和计算方法
- 批准号:
2101012 - 财政年份:2021
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
ExpandQISE: Track 2: Expanding Quantum Research and Education at Winston-Salem State University with Research on Hybrid Microwave-Optical Quantum Devices
ExpandQISE:轨道 2:通过混合微波光量子器件的研究扩大温斯顿塞勒姆州立大学的量子研究和教育
- 批准号:
2329017 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
Research on ion acceleration mechanism in microwave plasma
微波等离子体中离子加速机理研究
- 批准号:
23H01614 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: SWIFT: Facilitating Novel Modalities for Spectrum Sharing between Earth-Observing Microwave Radiometers and Commercial Users
合作研究:SWIFT:促进地球观测微波辐射计和商业用户之间频谱共享的新模式
- 批准号:
2229103 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Research for bi-directional processing with radar and tomography for microwave breast cancer diagnosis and treatment
雷达和断层扫描双向处理用于微波乳腺癌诊断和治疗的研究
- 批准号:
23H01418 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: SWIFT: Facilitating Novel Modalities for Spectrum Sharing between Earth-Observing Microwave Radiometers and Commercial Users
合作研究:SWIFT:促进地球观测微波辐射计和商业用户之间频谱共享的新模式
- 批准号:
2229104 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Collaborative Research: Combining Galaxy and Cosmic Microwave Background Surveys for Precise and Robust Constraints on Cosmology
合作研究:结合星系和宇宙微波背景调查对宇宙学进行精确和稳健的约束
- 批准号:
2306166 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Collaborative Research: Combining Galaxy and Cosmic Microwave Background Surveys for Precise and Robust Constraints on Cosmology
合作研究:结合星系和宇宙微波背景调查对宇宙学进行精确和稳健的约束
- 批准号:
2306165 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Research Infrastructure: MRI: Development of a Small Aperture Telescope Pathfinder to Advance Studies of the Polarized Cosmic Microwave Background
研究基础设施:MRI:开发小口径望远镜探路者,推进偏振宇宙微波背景研究
- 批准号:
2216223 - 财政年份:2022
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Research on Real-time Imaging Technique of Intensity Distribution of Microwave Electric and Magnetic Fields Using Cesium Gas Cell
铯气室微波电场和磁场强度分布实时成像技术研究
- 批准号:
22K04115 - 财政年份:2022
- 资助金额:
$ 46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF-MRI: Acquisition of a Microwave Radiometer for Arctic Atmospheric Boundary Layer Research & Education
NSF-MRI:购买微波辐射计用于北极大气边界层研究
- 批准号:
2117971 - 财政年份:2021
- 资助金额:
$ 46万 - 项目类别:
Standard Grant