Exploiting unconventional QR-algorithms for fast and accurate computations of roots of polynomials
利用非常规 QR 算法快速准确地计算多项式的根
基本信息
- 批准号:227388185
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Retrieving the roots of a polynomial is a classical, centuries old problem. Still it is considered a fundamental problem in computational mathematics, with significant impact on present-day applications [Pan97]. Typical problems in sciences, engineering, statistics and financing, require the roots of moderate degree polynomials. Research evolutions, however, brought us new applications and larger problems coming, e.g., from algebraic optimization, algebraic geometry, and signal processing, requiring the solution of polynomials having degrees of several thousands. Long-established solvers are not satisfactory anymore, often needing unacceptable computing time or even delivering untrustworthy results. At this moment dominant computing packages tackle this problem by applying the QR-algorithm on the associated companion matrix, whose eigenvalues coincide with the roots. Even though the QR-algorithm is named one of the top 10 algorithms of the 20th century [Cip00], the current form, as pointed out by C. Moler [Mol91], Matlab´s inventor, is not yet the best possible, as specifically designed algorithms might save an order of storage and computing time. In this proposal we will unite two novel and challenging research trajectories. Newly developed unconventional QR-algorithms [Van11, VW12] will be applied on generalized companion factorizations [Fie03] to develop new fast, accurate, and reliable algorithms competing with state-of-the-art root-solvers. In this proposal we will unite two novel and challenging research trajectories.
检索多项式的根是一个具有数百年历史的经典问题。尽管如此,它仍然被认为是计算数学中的一个基本问题,对当今的应用具有重大影响[Pan97]。科学、工程、统计和金融中的典型问题需要中等次数多项式的根。然而,研究的发展给我们带来了新的应用和更大的问题,例如代数优化、代数几何和信号处理,需要求解数千次多项式。历史悠久的求解器不再令人满意,通常需要不可接受的计算时间,甚至提供不可信的结果。目前,主流计算包通过在相关的伴随矩阵上应用 QR 算法来解决这个问题,该矩阵的特征值与根一致。尽管 QR 算法被评为 20 世纪十大算法之一 [Cip00],但正如 Matlab 的发明者 C. Moler [Mol91] 所指出的,当前的形式还不是最好的,因为专门设计的算法可能会节省大量的存储和计算时间。在这个提案中,我们将结合两个新颖且具有挑战性的研究轨迹。新开发的非常规 QR 算法 [Van11、VW12] 将应用于广义伴随分解 [Fie03],以开发新的快速、准确和可靠的算法,与最先进的根求解器竞争。在这个提案中,我们将结合两个新颖且具有挑战性的研究轨迹。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Thomas Mach其他文献
Dr. Thomas Mach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
铁磁性超导体的微观电子态和相图的理论研究
- 批准号:10574063
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Unconventional superconductivity and disordered criticality in two dimensions
职业:非常规超导性和二维无序临界性
- 批准号:
2341066 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Uncovering the unconventional and multifaceted roles of histamine in bacterial infection
揭示组胺在细菌感染中的非常规和多方面的作用
- 批准号:
502559 - 财政年份:2024
- 资助金额:
-- - 项目类别:
How do unconventional T cells die?
非常规T细胞如何死亡?
- 批准号:
DP240101173 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Discovery and optimisation of unconventional yeasts to enable the industrial scaling of alternative protein production using precision fermentation
非常规酵母的发现和优化,以实现利用精密发酵实现替代蛋白质生产的工业规模化
- 批准号:
10074091 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Time Resolved Probing of Unconventional Orders in Novel Kagome Metals
新型 Kagome 金属中非常规有序的时间分辨探测
- 批准号:
2226519 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Unconventional Excitations and Information Spreading in Frustrated Quantum Magnets
受挫量子磁体中的非常规激发和信息传播
- 批准号:
23KJ2136 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Elasto-superconductivity: a pathway to devising new unconventional superconductors
弹性超导:设计新型非常规超导体的途径
- 批准号:
EP/X01245X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Regulation of maintenance and activation of unconventional T cells
非常规 T 细胞的维持和激活的调节
- 批准号:
23H00403 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: Remote epitaxy on van der Waals materials: unveiling adatom interaction, growing single-crystal membranes, and producing unconventional heterostructures
合作研究:范德华材料的远程外延:揭示吸附原子相互作用、生长单晶膜以及产生非常规异质结构
- 批准号:
2240995 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: DMREF: Discovery of unconventional superconductors by design
合作研究:DMREF:通过设计发现非常规超导体
- 批准号:
2323970 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant