CRII: SaTC: Repairing Code from Inferred Specifications of Information Flow Security

CRII:SaTC:根据信息流安全推断规范修复代码

基本信息

  • 批准号:
    1657530
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-03-01 至 2019-02-28
  • 项目状态:
    已结题

项目摘要

As more software computes using sensitive user data, it increasingly important to ensure that data flows only where it is permitted. Protecting sensitive data often involves reasoning about how sensitive values and policies are interacting with functionality across the program. The need to reason across the code base makes it difficult not only for programmers to implement computations using sensitive data, but also to make existing code adhere to new policies. This project investigates an approach for (1) inferring information flow policies from potentially buggy code and (2) performing program repair to ensure programs adhere to the specified policies. Not only does this approach help identify potential misuses of sensitive information, but it also helps prevent leaks in code from well-intentioned programmers, and provides a mechanism for modifying arbitrary code to satisfy a given policy.Enabling this approach is a policy-agnostic semantic model, developed to disentangle information flow concerns from other functionality. Using policy-agnostic programming, the programmer may implement information flow policies by specifying them alongside sensitive data values, rather than implementing them as conditional access checks across the program. Prior work on Lifty supports policy-agnostic programming using type-driven repair, based on program synthesis for liquid types, which are value-dependent refinement types. Previously, programs could only benefit from policy-agnostic programming if the policies are known, but this is not always the case with existing code. We propose an approach for inferring liquid types from potentially buggy code. The inferred types now make it possible to perform sound repair. Representing the inferred policies as liquid types also facilitates modification of the policies. The proposal describes both a strategy for inferring a set of possible policies, and a solution for choosing which policies to use for repair.
随着越来越多的软件使用敏感的用户数据进行计算,确保数据只在允许的地方流动变得越来越重要。保护敏感数据通常涉及推理敏感值和策略如何与程序中的功能交互。需要跨代码库进行推理,这不仅使程序员难以使用敏感数据实现计算,而且使现有代码遵守新策略。本项目研究一种方法,用于(1)从潜在的错误代码中推断信息流策略,以及(2)执行程序修复以确保程序遵守指定的策略。这种方法不仅有助于识别敏感信息的潜在误用,而且还有助于防止善意程序员泄露代码,并提供一种修改任意代码以满足给定策略的机制。启用这种方法的是一种与策略无关的语义模型,该模型被开发用于将信息流关注点与其他功能区分开来。使用与策略无关的编程,程序员可以通过将信息流策略与敏感数据值一起指定来实现信息流策略,而不是将它们实现为跨程序的条件访问检查。Lifty之前的工作支持使用类型驱动修复的策略无关编程,基于液体类型的程序合成,这是值依赖的细化类型。以前,程序只有在策略已知的情况下才能从策略无关编程中受益,但现有代码并不总是如此。我们提出了一种方法,从潜在的错误代码推断液体类型。推断的类型现在可以执行声音修复。将所推断的策略表示为流动类型还便于策略的修改。该提案描述了一个策略,用于推断一组可能的政策,并选择哪些政策用于修复的解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jean Yang其他文献

ESTRELA: Automated Policy Enforcement Across Remote APIs
ESTRELA:跨远程 API 的自动策略执行
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abhishek Bichhawat;Akash Trehan;Jean Yang;Matt Fredrikson
  • 通讯作者:
    Matt Fredrikson
Case Study of Micro-Contamination Control
  • DOI:
    10.4209/aaqr.2007.05.0030
  • 发表时间:
    2024-11-18
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Shou-Nan Li;Hui-Ya Shih;Shaw-Yi Yen;Jean Yang
  • 通讯作者:
    Jean Yang
Counterfactual Resimulation for Causal Analysis of Rule-Based Models
基于规则的模型因果分析的反事实重模拟
Preventing information leaks with policy-agnostic programming
A Trace Query Language for Rule-Based Models
基于规则的模型的跟踪查询语言

Jean Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jean Yang', 18)}}的其他基金

CAREER: A Policy-Agnostic Programming Framework for Statistical Privacy
职业生涯:一个与策略无关的统计隐私编程框架
  • 批准号:
    1750669
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant

相似海外基金

CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
  • 批准号:
    2348147
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
  • 批准号:
    2348181
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Evolving I/O Protocols for Confidential Computing
CRII:SaTC:用于机密计算的不断发展的 I/O 协议
  • 批准号:
    2348130
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: SaTC: Enforcing Expressive Security Policies using Trusted Execution Environments
CRII:SaTC:使用可信执行环境执行表达性安全策略
  • 批准号:
    2348304
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CRII: SaTC: The Right to be Forgotten in Follow-ups of Machine Learning: When Privacy Meets Explanation and Efficiency
CRII:SaTC:机器学习后续中被遗忘的权利:当隐私遇到解释和效率时
  • 批准号:
    2348177
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了