Collaborative Research: Conference on Cognitive Computational Neuroscience (CCN)
合作研究:认知计算神经科学会议(CCN)
基本信息
- 批准号:1658493
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cognitive Computational Neuroscience (CCN) is an annual scientific meeting for neuroscientists characterizing the neural computations that underlie complex behavior. The goal is to develop computationally defined models of brain information processing that explain rich measurements of brain activity and behavior. Such models will ultimately have to perform feats of intelligence such as perception, internal modelling and memory of the environment, decision-making, planning, action, and motor control under naturalistic conditions. Historically, different disciplines have met subsets of these goals. Cognitive science has developed computational models at the cognitive level to explain aspects of complex behavior. Computational neuroscience has developed neurobiologically plausible computational models to explain neuronal responses to sensory stimuli and certain low-dimensional decision, memory, and control processes. Cognitive neuroscience has mapped a broad range of cognitive processes onto brain regions. Artificial intelligence has developed models that perform feats of intelligence. The community must now put the pieces of the puzzle together, and CCN is unique in its focus on the intersection between these fields. CCN is envisioned not only as an engine for advancing research, but as a vehicle for making broader impacts on education and society. As evidenced by the recent trend of major corporate acquisitions of AI startups founded by neuroscientists, biological inspiration for electronics and software development is a growing trend with significant economic implications. In its early stages, the broader impact focus of CCN will be on increasing the visibility of women and scientists from underrepresented populations via speaking opportunities and travel awards. In addition, representation on women on the female fractions on the steering and advisory committees exceed those typical in relevant fields, without compromise in qualifications. Conferences will include hands-on tutorials, and materials from these will propagate to various university curricula.A central goal of neuroscience is to understand how vast populations of neurons give rise to complex behavior. Today, advances in various domains offer tangible possibilities to make fundamental conceptual breakthroughs. From an experimental point of view, neural recording technologies, such as high-resolution fMRI, dense recording arrays, magnetoencephalography (MEG), and calcium imaging, now provide opportunities to observe neural activity at unprecedented resolution and scale. At the same time, research in cognitive science has become increasingly sophisticated in identifying computational principles that may serve as the basis for human cognition, and machine learning and artificial intelligence have made great strides in building models to autonomously solve complex cognitive tasks. However, interactions among these distinct disciplines remain rare. This new conference may stimulate unifying frameworks that fully realize the cross-disciplinary potential of these individual advances. In more concrete terms, the goal of CCN is to create and foster a community that will develop models of brain information processing with several key features. These models should (1) be fully computationally defined and implemented in computer simulations; (2) be neurobiologically plausible; (3) explain measurements of brain activity (and continue to do so as spatiotemporal resolution and scale improve); (4) explain behavior for naturalistic stimuli and tasks; and (5) perform feats of intelligence such as recognition, internal modelling and representation of the environment, decision-making, planning, action, and motor control. Such models currently do not exist and are unlikely to emerge without greatly improved cross-disciplinary engagement.
认知计算神经科学(CCN)是神经科学家的年度科学会议,其特征是复杂行为背后的神经计算。目标是开发大脑信息处理的计算定义模型,解释大脑活动和行为的丰富测量。这样的模型最终将不得不在自然条件下完成感知、内部建模和环境记忆、决策、规划、行动和运动控制等智能壮举。从历史上看,不同的学科已经达到了这些目标的子集。认知科学已经在认知水平上开发了计算模型来解释复杂行为的各个方面。计算神经科学已经开发出神经生物学上合理的计算模型来解释神经元对感官刺激的反应以及某些低维决策、记忆和控制过程。认知神经科学已经将广泛的认知过程映射到大脑区域。人工智能已经开发出了执行智能壮举的模型。社区现在必须把拼图的碎片放在一起,CCN在关注这些领域之间的交叉点方面是独一无二的。CCN不仅被设想为推进研究的引擎,而且被设想为对教育和社会产生更广泛影响的工具。正如最近企业收购神经科学家创立的人工智能初创公司的趋势所证明的那样,电子和软件开发的生物灵感是一个具有重大经济影响的增长趋势。在早期阶段,CCN更广泛的影响重点将是通过演讲机会和旅行奖励来提高代表性不足人口中的妇女和科学家的知名度。 此外,在指导委员会和咨询委员会中,妇女在女性部分的代表性超过了相关领域的典型代表性,而在资格方面没有妥协。会议将包括实践教程,这些材料将传播到各个大学的校园。神经科学的一个中心目标是了解大量的神经元是如何引起复杂的行为的。今天,各个领域的进展为实现根本性的概念突破提供了切实的可能性。从实验的角度来看,神经记录技术,如高分辨率功能磁共振成像,密集记录阵列,脑磁图(MEG)和钙成像,现在提供了机会,以前所未有的分辨率和规模观察神经活动。与此同时,认知科学的研究在识别可能作为人类认知基础的计算原理方面变得越来越复杂,机器学习和人工智能在构建模型以自主解决复杂认知任务方面取得了长足进步。然而,这些不同学科之间的相互作用仍然很少。这次新的会议可能会刺激统一的框架,充分实现这些个别进步的跨学科潜力。更具体地说,CCN的目标是创建和培育一个社区,开发具有几个关键特征的大脑信息处理模型。这些模型应该:(1)在计算机模拟中完全计算定义和实现;(2)在神经生物学上是合理的;(3)解释大脑活动的测量(并继续这样做的时空分辨率和规模的改善);(4)解释行为的自然刺激和任务;(5)执行智力技能,如识别、内部建模和环境表示、决策、规划、行动和运动控制。这种模式目前并不存在,如果不大大改善跨学科的参与,也不太可能出现。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alyson Fletcher其他文献
Alyson Fletcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alyson Fletcher', 18)}}的其他基金
Collaborative Research: CIF: Medium: Learning and Inference in High-Dimensional Models: Rigorous Analysis and Applications
合作研究:CIF:中:高维模型中的学习和推理:严谨的分析和应用
- 批准号:
1955732 - 财政年份:2020
- 资助金额:
$ 1.66万 - 项目类别:
Continuing Grant
Conference on Cognitive Computational Neuroscience (CCN): September 2018, Philadelphia, PA
认知计算神经科学会议 (CCN):2018 年 9 月,宾夕法尼亚州费城
- 批准号:
1848840 - 财政年份:2018
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Scalable Learning of Nonlinear Models in Large Neural Populations
CIF:媒介:协作研究:大型神经群体中非线性模型的可扩展学习
- 批准号:
1738286 - 财政年份:2016
- 资助金额:
$ 1.66万 - 项目类别:
Continuing Grant
CAREER: Structured Nonlinear Estimation via Message Passing: Theory and Applications
职业:通过消息传递进行结构化非线性估计:理论与应用
- 批准号:
1738285 - 财政年份:2016
- 资助金额:
$ 1.66万 - 项目类别:
Continuing Grant
CIF: Medium: Collaborative Research: Scalable Learning of Nonlinear Models in Large Neural Populations
CIF:媒介:协作研究:大型神经群体中非线性模型的可扩展学习
- 批准号:
1564278 - 财政年份:2016
- 资助金额:
$ 1.66万 - 项目类别:
Continuing Grant
CAREER: Structured Nonlinear Estimation via Message Passing: Theory and Applications
职业:通过消息传递进行结构化非线性估计:理论与应用
- 批准号:
1254204 - 财政年份:2013
- 资助金额:
$ 1.66万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
- 批准号:
2350344 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Collaborative Research: Conference: 2024 Aspiring PIs in Secure and Trustworthy Cyberspace
协作研究:会议:2024 年安全可信网络空间中的有抱负的 PI
- 批准号:
2404952 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Strategies to Mitigate Implicit Bias and Promote an Ethos of Care in the Research Enterprise: A Convening
协作研究:会议:减轻隐性偏见并促进研究企业关怀精神的策略:召开会议
- 批准号:
2324401 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Stratigraphic Paleobiology Field Conference
合作研究:会议:地层古生物学现场会议
- 批准号:
2321174 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
- 批准号:
2400111 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
- 批准号:
2400115 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant