Predictive Models for Wave Damping by Flexible Aquatic Vegetation

柔性水生植被的波浪阻尼预测模型

基本信息

  • 批准号:
    1659923
  • 负责人:
  • 金额:
    $ 44.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-02-15 至 2022-01-31
  • 项目状态:
    已结题

项目摘要

Aquatic vegetation provides many natural benefits, including the protection of shorelines from storms and erosion, the provision of habitat, and the improvement of water quality. Waves can kick up sediment from the bed causing erosion, making the water cloudy and adding pollutants to the water. Vegetation reduces wave motion and keeps sediment from being kicked up. However, this benefit of vegetation cannot be incorporated into lake and coastal management plans, because there is no accurate method for predicting the reduction of wave motion by vegetation. This project will develop a model for predicting the reduction of wave energy from vegetation based on the characteristic of the vegetation, including geometry, size and flexibility. With this new model, engineers and watershed managers will be able to assess different scenarios of vegetation restoration for their potential to protect shorelines and to reduce erosion events that drive poor water quality. This laboratory study explores the interaction between flexible vegetation and waves to develop predictive models for the impact of vegetation on wave energy dissipation. Flexible vegetation bends in response to flow, and this reconfiguration alters the vegetation drag. The impact of reconfiguration can be described in terms of an effective plant length, le, which is the length of rigid plant that imparts the same hydrodynamic drag as the reconfigured flexible plant. In a preliminary study, the PI?s lab developed scaling laws for individual plants with simple strap morphology (fresh and saltwater eelgrass) that predict the drag in current and in waves. This new study will extend the scaling laws to communities of plants (meadows), to conditions with combined currents and waves, and to plants of more complex morphology (e.g. Elodea and Potamogeton). Specifically, this study will develop models to predict le from plant geometric and biomechanical properties, and current and wave-field parameters, and will demonstrate how the effective length can be used to predict the wave energy dissipation over a meadow in waves and in combined wave-current conditions. The experiments will be carried out in a 24m-long and 60cm-deep water channel with a paddle wavemaker. Initially, model blades will be constructed from low (LDPE) and high (HDPE) density polyethylene. Later experiments will consider more complex morphologies using both live plants and 3-D printed models. The motion of individual blades will be captured with digital imaging, and the forces on individual blades in isolation and within a meadow will be measured with a submersible force transducer. The velocity field will be measured with acoustic Doppler velocimetry and PIV. The dissipation of wave energy will be estimated from the longitudinal decay of wave amplitude, which will be measured using resistance-type water surface gages. This project will contribute fundamental understanding to fluid-flexible-structure interaction, which is relevant to many engineering topics, e.g. passive energy-harvesting devices and flow-control with flexible surfaces. Relevant to earth systems, this project will develop a unified model for predicting wave dissipation due to plants of different morphology and across the range of relevant field conditions.
水生植被提供了许多自然的好处,包括保护海岸线免受风暴和侵蚀,提供栖息地,以及改善水质。海浪可以把沉积物从河床上踢起,造成侵蚀,使水浑浊,并向水中添加污染物。植被减少了波浪运动,防止沉积物被踢起。然而,由于没有准确的方法来预测植被对波浪运动的减少,因此不能将植被的这种好处纳入湖泊和海岸管理计划。该项目将根据植被的几何形状、大小和灵活性等特征,开发一个预测植被波能减少的模型。有了这个新模型,工程师和流域管理者将能够评估不同的植被恢复方案,以评估它们在保护海岸线和减少导致水质恶化的侵蚀事件方面的潜力。本实验室研究探讨弹性植被与波浪的相互作用,以建立植被对波浪能量耗散影响的预测模型。灵活的植被会随着水流而弯曲,这种重新配置改变了植被的阻力。重新配置的影响可以用有效植物长度le来描述,它是刚性植物的长度,与重新配置的柔性植物具有相同的水动力阻力。在初步研究中,PI?美国实验室为具有简单带状形态的单个植物(淡水和咸水大叶藻)开发了缩放定律,预测了水流和波浪中的阻力。这项新的研究将把比例定律扩展到植物群落(草甸),水流和波浪结合的条件,以及更复杂形态的植物(如Elodea和Potamogeton)。具体而言,本研究将开发模型来预测植物的几何和生物力学特性,以及电流和波场参数,并将演示如何使用有效长度来预测波浪和波流组合条件下草甸上的波浪能量耗散。实验将在24米长、60厘米深的水道中进行,并配备桨状造波器。最初,模型叶片将由低密度(LDPE)和高密度(HDPE)聚乙烯制成。随后的实验将考虑更复杂的形态,使用活体植物和3d打印模型。单个叶片的运动将通过数字成像来捕捉,单个叶片在隔离状态下和草地内的受力将通过潜水力传感器来测量。速度场将用声波多普勒测速仪和PIV测量。波浪能量的耗散将由波幅的纵向衰减来估计,波幅的纵向衰减将使用阻力式水面计来测量。该项目将有助于对流体-柔性结构相互作用的基本理解,这与许多工程主题相关,例如被动能量收集装置和柔性表面的流动控制。与地球系统相关,本项目将开发一个统一的模型,用于预测不同形态植物和相关野外条件范围内的波耗散。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wave-induced reconfiguration of and drag on marsh plants
  • DOI:
    10.1016/j.jfluidstructs.2020.103192
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Xiaoxia Zhang;H. Nepf
  • 通讯作者:
    Xiaoxia Zhang;H. Nepf
Blade dynamics in combined waves and current
  • DOI:
    10.1016/j.jfluidstructs.2019.03.020
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Lei, Jiarui;Nepf, Heidi
  • 通讯作者:
    Nepf, Heidi
Wave damping by flexible marsh plants influenced by current
  • DOI:
    10.1103/physrevfluids.6.100502
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Xiaoxia Zhang;H. Nepf
  • 通讯作者:
    Xiaoxia Zhang;H. Nepf
Wave damping by flexible vegetation: Connecting individual blade dynamics to the meadow scale
  • DOI:
    10.1016/j.coastaleng.2019.01.008
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Lei, Jiarui;Nepf, Heidi
  • 通讯作者:
    Nepf, Heidi
Flow‐induced reconfiguration of aquatic plants, including the impact of leaf sheltering
  • DOI:
    10.1002/lno.11542
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Xiaoxia Zhang;H. Nepf
  • 通讯作者:
    Xiaoxia Zhang;H. Nepf
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heidi Nepf其他文献

Measured and Predicted Turbulent Kinetic Energy in Flow Through Emergent Vegetation With Real Plant Morphology
利用真实植物形态测量和预测流经挺水植被的湍流动能
  • DOI:
    10.1029/2020wr027892
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Yuan Xu;Heidi Nepf
  • 通讯作者:
    Heidi Nepf
Suspended Sediment Concentration Profile in a Typha Latifolia Canopy
香蒲冠层中的悬浮沉积物浓度分布
  • DOI:
    10.1029/2021wr029902
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Yuan Xu;Heidi Nepf
  • 通讯作者:
    Heidi Nepf
Sediment Pickup Rate in Bare and Vegetated Channels
裸露和植被河道的沉积率
  • DOI:
    10.1029/2022gl101279
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Yuan Xu;Danxun Li;Heidi Nepf
  • 通讯作者:
    Heidi Nepf
Turbulence and Particle Deposition Under Steady Flow Along a Submerged Seagrass Meadow
水下海草甸稳定流下的湍流和颗粒沉积
The thresholds of sediment resuspension within emergent vegetation under combined wave-current conditions – A flume experiment
波流联合条件下挺水植物内部泥沙再悬浮的阈值——一项水槽实验
  • DOI:
    10.1016/j.coastaleng.2025.104727
  • 发表时间:
    2025-06-15
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Thomas J. van Veelen;Heidi Nepf;Suzanne J.M.H. Hulscher;Bas W. Borsje
  • 通讯作者:
    Bas W. Borsje

Heidi Nepf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heidi Nepf', 18)}}的其他基金

Impact of vegetation geometry and distribution on bedload transport
植被几何形状和分布对底质输送的影响
  • 批准号:
    1854564
  • 财政年份:
    2019
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Continuing Grant
Sediment Transport in Vegetated Channels: Evaluating the Roles of Mean Bed Stress and Turbulent Impulse on Incipient Motion
植被河道中的沉积物输送:评估平均床应力和湍流脉冲对初始运动的作用
  • 批准号:
    1414499
  • 财政年份:
    2014
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Standard Grant
The Impact of Blade Motion on the Flux to a Blade Surface
叶片运动对叶片表面通量的影响
  • 批准号:
    1140970
  • 财政年份:
    2012
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dispersion of Particles Within and Above Plant Canopies
合作研究:植物冠层内部和上方的颗粒分散
  • 批准号:
    1005480
  • 财政年份:
    2011
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Continuing Grant
Mass Exchange between Flexible Submerged Canopies and Adjacent Open Water
灵活的水下檐篷和相邻开放水域之间的物质交换
  • 批准号:
    0751358
  • 财政年份:
    2008
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Standard Grant
Predicting In-Canopy Velocity and Retention Time for Aquatic Canopies
预测水生冠层的冠层内速度和保留时间
  • 批准号:
    0738352
  • 财政年份:
    2008
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Standard Grant
Thermally-Driven Exchange Flows in Regions of Vegetation
植被区域中热驱动的交换流
  • 批准号:
    0509658
  • 财政年份:
    2005
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Continuing Grant
Dispersion in Vegetated Flow
植被流的分散
  • 批准号:
    0309188
  • 财政年份:
    2003
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Continuing Grant
Momentum and Scalar Exchange Between Channels and Vegetated Banks
通道和植被银行之间的动量和标量交换
  • 批准号:
    0125056
  • 财政年份:
    2002
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Continuing Grant
(CAREER) Metals Transport in Transition Wetlands: Research and Education Development Plan
(职业)过渡湿地中的金属运输:研究和教育发展计划
  • 批准号:
    9629259
  • 财政年份:
    1997
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
  • 批准号:
    DP240102104
  • 财政年份:
    2024
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Discovery Projects
GWMODELS. Next-generation models of gravitational-wave sources: harnessing the small-mass-ratio limit
GW模型。
  • 批准号:
    EP/Y008251/1
  • 财政年份:
    2023
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Research Grant
Gravitational Wave Models for Black Hole - Neutron Stars in General Relativity and Beyond
黑洞的引力波模型 - 广义相对论及更远的中子星
  • 批准号:
    2309301
  • 财政年份:
    2023
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Standard Grant
Practical Improvement of Power Generation Efficiency of Wave Power Floating Arrays in Irregular Waves Using AI Models
利用人工智能模型实际提高不规则波浪中波浪能漂浮阵列的发电效率
  • 批准号:
    22H01698
  • 财政年份:
    2022
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Nonlinear Wave Models in Domains with a Boundary
有边界域中的非线性波模型
  • 批准号:
    2206270
  • 财政年份:
    2022
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Standard Grant
Micro-shear wave elastography imaging for biomechanical assessment of 3D cardiac microtissue models
用于 3D 心脏微组织模型生物力学评估的微剪切波弹性成像
  • 批准号:
    566611-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Micro-shear wave elastography imaging for biomechanical assessment of 3D cardiac microtissue models
用于 3D 心脏微组织模型生物力学评估的微剪切波弹性成像
  • 批准号:
    566612-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Multi-scale models for nonlinear wave-induced atmospheric phenomena
非线性波引起的大气现象的多尺度模型
  • 批准号:
    RGPIN-2018-05296
  • 财政年份:
    2022
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating Mantle Dynamics in the Pacific Northwest Using 3D Anisotropic Velocity Models from Surface Wave Tomography
使用表面波断层扫描 3D 各向异性速度模型研究太平洋西北地区的地幔动力学
  • 批准号:
    2224229
  • 财政年份:
    2022
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Standard Grant
Multi-scale models for nonlinear wave-induced atmospheric phenomena
非线性波引起的大气现象的多尺度模型
  • 批准号:
    RGPIN-2018-05296
  • 财政年份:
    2021
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了