Development of Symbolic Number Processing Brain Networks from Kindergarten to 2nd Grade

从幼儿园到二年级符号数字处理大脑网络的发展

基本信息

  • 批准号:
    1660816
  • 负责人:
  • 金额:
    $ 134.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-15 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

Math skills are a strong predictor of life success, yet many people struggle to acquire basic numerical and mathematical skills. Being able to fluently process symbolic numbers (i.e. Arabic digits) is a key foundation for the development of basic math skills. However, very little is known about the brain systems which support the processing numerical symbols, how those systems develop in the early school years, and how they are related to math skill development. Understanding the development of these systems will help in achieving new insights into typical and atypical math development. This project, led by a team of researchers at Vanderbilt University, will provide the first multimodal, cohesive characterization of the trajectories and interrelations of the component mechanisms within the symbolic number processing brain network, and crucially, their relation to growth in math skills, during a window of time crucial for successful math development. In so doing, this project will provide significant new knowledge regarding typical development of symbolic number processing mechanisms and their relation to math that is crucial if we are to understand the sources of math learning disabilities. Thus, the results of the proposed project will lay the foundation for future research investigating the causal mechanisms underlying math learning disabilities such as dyscalculia, by providing both an experimental and theoretical framework for empirical testing. Furthermore, this project will yield new insights into the developmental relations between symbolic and nonsymbolic number processing mechanisms, and the relation between brain structure and function. The results of this project will provide empirical evidence to support the development of more effective pedagogies and intervention approaches for math education. Such knowledge is crucial if we are to better understand math disabilities and better facilitate the acquisition of math skills. The project is funded by the EHR Core Research (ECR) program, which supports work that advances the fundamental research literature on STEM learning.The goal of this project is to provide a multimodal characterization of the neural networks involved in the processing of symbolic numbers using functional magnetic resonance imaging (fMRI), as well as structural metrics of grey and white matter. No prior study has assessed the longitudinal development of children's number processing neural networks. The proposed connective network for symbolic number processing (intraparietal sulci, left angular gyrus, supramarginal gyri, ventral occipito-temporal cortex, and inferior frontal gyrus) is well-motivated from the literature on adult symbolic number processing. The project will examine the development of those networks from kindergarten through 2nd grade, and will examine the extent to which they predict math skill development. Investigators will study 120 children longitudinally from kindergarten to 2nd grade. In each year participants will complete a battery of symbolic and nonsymbolic number processing tasks in the fMRI scanner, in addition to a battery of behavioral tests measuring math skills and general cognitive abilities. Measures of brain structure will also be collected in each year.
数学技能是人生成功的一个强有力的预测因素,但许多人很难获得基本的数字和数学技能。能够流利地处理符号数字(即阿拉伯数字)是发展基本数学技能的关键基础。然而,人们对支持处理数字符号的大脑系统知之甚少,这些系统如何在早期学校发展,以及它们如何与数学技能发展相关。了解这些系统的发展将有助于实现对典型和非典型数学发展的新见解。该项目由范德比尔特大学的一组研究人员领导,将提供第一个多模态的,有凝聚力的特征化的轨迹和符号数字处理大脑网络内的组件机制的相互关系,以及至关重要的是,它们与数学技能增长的关系,在成功的数学发展至关重要的时间窗口。在这样做的过程中,这个项目将提供有关符号数字处理机制的典型发展及其与数学的关系的重要新知识,如果我们要了解数学学习障碍的来源,这是至关重要的。 因此,建议的项目的结果将奠定基础,为未来的研究调查的因果机制,数学学习障碍,如计算障碍,通过提供一个实验和理论框架的实证检验。此外,该项目将对符号和非符号数字处理机制之间的发展关系以及大脑结构和功能之间的关系产生新的见解。本研究的结果将提供实证证据,以支持发展更有效的数学教育策略和干预方法。如果我们要更好地理解数学障碍,更好地促进数学技能的获得,这些知识是至关重要的。该项目由EHR核心研究(ECR)计划资助,该计划支持推进STEM学习基础研究文献的工作,该项目的目标是使用功能性磁共振成像(fMRI)提供参与符号数字处理的神经网络的多模态表征,以及灰质和白色物质的结构度量。以前没有研究评估儿童数字处理神经网络的纵向发展。建议连接网络的符号数字处理(顶内沟,左角回,缘上回,腹侧枕颞皮层,额下回)是很好的动机从成人符号数字处理的文献。该项目将研究这些网络从幼儿园到二年级的发展,并将研究它们预测数学技能发展的程度。研究人员将对120名从幼儿园到二年级的儿童进行纵向研究。每年,参与者将在功能磁共振成像扫描仪中完成一系列符号和非符号数字处理任务,此外还有一系列测量数学技能和一般认知能力的行为测试。每年还将收集大脑结构的测量数据。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neurocognitive mechanisms of digit processing and their relationship with mathematics competence.
  • DOI:
    10.1016/j.neuroimage.2018.10.047
  • 发表时间:
    2019-01-15
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Pollack C;Price GR
  • 通讯作者:
    Price GR
Probing the mechanisms underlying numerosity-to-numeral mappings and their relation to math competence
探究数字到数字映射的机制及其与数学能力的关系
  • DOI:
    10.1007/s00426-020-01299-z
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yeo, Darren J.;Price, Gavin R.
  • 通讯作者:
    Price, Gavin R.
Investigating the visual number form area: a replication study
研究视觉数字形式区域:复制研究
  • DOI:
    10.1098/rsos.182067
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Merkley, Rebecca;Conrad, Benjamin;Price, Gavin;Ansari, Daniel
  • 通讯作者:
    Ansari, Daniel
The “Inferior Temporal Numeral Area” distinguishes numerals from other character categories during passive viewing: A representational similarity analysis
“下颞数字区域”在被动观看过程中将数字与其他字符类别区分开来:代表性相似性分析
  • DOI:
    10.1016/j.neuroimage.2020.116716
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Yeo, Darren J.;Pollack, Courtney;Merkley, Rebecca;Ansari, Daniel;Price, Gavin R.
  • 通讯作者:
    Price, Gavin R.
Network topology of symbolic and nonsymbolic number comparison.
符号数和非符号数比较的网络拓扑。
  • DOI:
    10.1162/netn_a_00144
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Conrad,BenjaminN;Wilkey,EricD;Yeo,DarrenJ;Price,GavinR
  • 通讯作者:
    Price,GavinR
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gavin Price其他文献

Changes in Attitudes Towards Business Ethics Held by Former South African Business Management Students
  • DOI:
    10.1007/s10551-012-1314-6
  • 发表时间:
    2012-04-19
  • 期刊:
  • 影响因子:
    6.700
  • 作者:
    Gavin Price;Andries Johannes van der Walt
  • 通讯作者:
    Andries Johannes van der Walt

Gavin Price的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gavin Price', 18)}}的其他基金

CAREER: Longitudinal Development of Numerical Processing Brain Networks in Developmental Dyscalculia: A Neuroimaging Study from Kindergarten to Second Grade
职业:发展性计算障碍中数字处理大脑网络的纵向发展:从幼儿园到二年级的神经影像学研究
  • 批准号:
    1750213
  • 财政年份:
    2018
  • 资助金额:
    $ 134.51万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Symbolic Learning with Neural Language Models
职业:使用神经语言模型进行符号学习
  • 批准号:
    2338833
  • 财政年份:
    2024
  • 资助金额:
    $ 134.51万
  • 项目类别:
    Continuing Grant
Conference: NSF Workshop on Hardware-Software Co-design for Neuro-Symbolic Computation
会议:NSF 神经符号计算软硬件协同设计研讨会
  • 批准号:
    2338640
  • 财政年份:
    2023
  • 资助金额:
    $ 134.51万
  • 项目类别:
    Standard Grant
Symbolic representation of objects via visual symbols in the primates brain
灵长类动物大脑中通过视觉符号对物体进行符号表示
  • 批准号:
    23K12942
  • 财政年份:
    2023
  • 资助金额:
    $ 134.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Reconstruction and Application of Learning Methods for Symbolic Regression Models
符号回归模型学习方法的重构及应用
  • 批准号:
    23H03466
  • 财政年份:
    2023
  • 资助金额:
    $ 134.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigating Symbolic Computation in the Brain: Neural Mechanisms of Compositionality
研究大脑中的符号计算:组合性的神经机制
  • 批准号:
    10644518
  • 财政年份:
    2023
  • 资助金额:
    $ 134.51万
  • 项目类别:
Explorations into the Neurocognitive Basis of Symbolic Processing: Focusing on the Mediation System between Form and Meaning of Human Language
符号加工的神经认知基础探索:聚焦人类语言形式与意义的中介系统
  • 批准号:
    23H05493
  • 财政年份:
    2023
  • 资助金额:
    $ 134.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
CPS: Small: Neuro-Symbolic Learning and Control with High-Level Knowledge Inference
CPS:小型:具有高级知识推理的神经符号学习和控制
  • 批准号:
    2304863
  • 财政年份:
    2023
  • 资助金额:
    $ 134.51万
  • 项目类别:
    Standard Grant
SLES: Vision-Based Maximally-Symbolic Safety Supervisor with Graceful Degradation and Procedural Validation
SLES:基于视觉的最大符号安全监控器,具有优雅的降级和程序验证功能
  • 批准号:
    2331763
  • 财政年份:
    2023
  • 资助金额:
    $ 134.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了