SLES: Vision-Based Maximally-Symbolic Safety Supervisor with Graceful Degradation and Procedural Validation

SLES:基于视觉的最大符号安全监控器,具有优雅的降级和程序验证功能

基本信息

  • 批准号:
    2331763
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

This project aims to develop new technology to ensure the safety of autonomous robotic systems such as self-driving cars and home robots. Safety for such systems is critical because robots interact with the physical world and people, resulting in potential for adverse interaction outcomes in the absence of safety. Most next generation robotic systems are expected to contain components built using machine learning. Such learning-based components can result in new capabilities but can also be prone to unpredictable behavior or failures, making the full system unsafe to use. This project seeks to develop a general solution to this problem. The main idea is to build a safety supervisor, a software module that continuously monitors the actions of a robot and intervenes as needed to ensure safety. The safety supervisor functions similarly to a driving coach, who watches the practicing driver and takes over when necessary. Techniques developed in this project will be broadly useful for building safe and effective robotic systems. Research in this project is integrated with K12, undergraduate, and graduate education through research training, course development and outreach events.This project develops techniques for constructing a vision-based safety supervisor that endows the full system with the safety property called graceful degradation, meaning that the full system will not fail catastrophically under unfamiliar or unknown scenarios; instead, the full system will detect the unfamiliar nature of the circumstance and switch to actions that are safe and conservative. To this end, the project team develops symbolic scene representations together with reasoning algorithms which produce interpretable and verifiable safety assessments and decisions that are robust to unfamiliar scenarios. To rigorously test and evaluate the safety supervisor, the project team develops algorithms for procedural validation: validation through procedurally generated synthetic visual data. Procedural generation is the process of generating synthetic data from symbolic computer programs, which provide full control at all levels of granularity and easily enable systematic simulation of long-tail events and novel scenarios. In addition to procedural validation, the project team also performs evaluation on real-world robots with a focus on navigation and rearrangement tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发新技术,以确保自动驾驶汽车和家用机器人等自主机器人系统的安全。这类系统的安全至关重要,因为机器人与物理世界和人相互作用,导致在没有安全的情况下可能产生不利的相互作用结果。大多数下一代机器人系统预计将包含使用机器学习构建的组件。这种基于学习的组件可以产生新的功能,但也可能容易出现不可预测的行为或故障,从而使整个系统不能安全使用。这个项目试图为这个问题开发一个通用的解决方案。其主要想法是建立一个安全监督员,这是一个软件模块,可以持续监控机器人的行动,并根据需要进行干预,以确保安全。安全监督员的职能类似于驾驶教练,后者观察练习司机,并在必要时接手。该项目开发的技术将广泛用于建立安全和有效的机器人系统。该项目的研究通过研究培训、课程开发和推广活动与K12、本科生和研究生教育相结合。该项目开发了构建基于视觉的安全监控器的技术,该技术赋予整个系统称为优雅降级的安全属性,这意味着在不熟悉或未知的情况下,整个系统不会灾难性地失效;相反,整个系统将检测到环境的不熟悉性质,并切换到安全和保守的操作。为此,项目组开发了符号场景表示和推理算法,这些算法产生可解释和可验证的安全评估和决策,对不熟悉的场景具有健壮性。为了严格测试和评估安全监督员,项目组开发了程序验证的算法:通过程序生成的合成视觉数据进行验证。程序生成是从符号计算机程序生成合成数据的过程,符号计算机程序在所有级别的粒度上提供完全控制,并容易实现对长尾事件和新场景的系统模拟。除了程序验证,项目团队还对真实世界的机器人进行评估,重点是导航和重新排列任务。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jia Deng其他文献

Detection and Analysis of Commonly Used Infection Indicators in Patients with Acute Urticaria
急性荨麻疹患者常用感染指标的检测与分析
Fast dechlorination of trichloroethylene by a bimetallic Fe(OH)2/Ni composite
双金属 Fe(OH)2/Ni 复合材料快速脱氯三氯乙烯
  • DOI:
    10.1016/j.seppur.2021.119597
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Jia Deng;Xiang Zhan;Feng Wu;Shuxian Gao;Li-Zhi Huang
  • 通讯作者:
    Li-Zhi Huang
Solar vaporizing desalination by heat concentration
  • DOI:
    https://doi.org/10.1016/j.renene.2020.02.105
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Jingyang Han;Xu Ji;Haiyang Xu;Yuanyuan Heng;Cong Wang;Jia Deng
  • 通讯作者:
    Jia Deng
Induced generation of hydroxyl radicals from green rust under oxic conditions by iron-phosphate complexes
  • DOI:
    https://doi.org/10.1016/j.cej.2021.128780
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Liping Fang;Ling Xu;Jia Deng;Shuxian Gao;Li-Zhi Huang
  • 通讯作者:
    Li-Zhi Huang
Development of In Vivo Predictive pH-Gradient Biphasic Dissolution Test for Weakly Basic Drugs: Optimization by Orthogonal Design
弱碱性药物体内预测 pH 梯度双相溶出测试的开发:正交设计优化
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Xiao;Shengying Shi;Junlin He;Jia Deng;Jingou Ji
  • 通讯作者:
    Jingou Ji

Jia Deng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jia Deng', 18)}}的其他基金

CAREER: Toward Video2Sim: Turning Real World Videos into Simulations
职业:走向Video2Sim:将现实世界的视频变成模拟
  • 批准号:
    1942981
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Multiple-Energy-Assisted Ultrasharp Probe-Based Nanomanufacturing for High-Resolution and High-Efficiency Nanopatterning
基于多能量辅助 Ultrasharp 探针的纳米制造,用于高分辨率和高效纳米图案化
  • 批准号:
    2006127
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
RI: Small: Inverse Rendering by Co-Evolutionary Learning
RI:小:通过共同进化学习进行逆向渲染
  • 批准号:
    1854435
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
BIGDATA: F: Collaborative Research: From Visual Data to Visual Understanding
BIGDATA:F:协作研究:从视觉数据到视觉理解
  • 批准号:
    1903222
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: From Visual Data to Visual Understanding
BIGDATA:F:协作研究:从视觉数据到视觉理解
  • 批准号:
    1633157
  • 财政年份:
    2016
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
RI: Small: Inverse Rendering by Co-Evolutionary Learning
RI:小:通过共同进化学习进行逆向渲染
  • 批准号:
    1617767
  • 财政年份:
    2016
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant

相似国自然基金

老年人群视障风险VISION管控模式构建与实证研究
  • 批准号:
    71974198
  • 批准年份:
    2019
  • 资助金额:
    48.5 万元
  • 项目类别:
    面上项目

相似海外基金

Vision Servoing Based Micro Continuum Robot Actuated by SMA Wires for Precise Laser Irradiation during Transurethral Lithotripsy
基于视觉伺服的微型连续体机器人由 SMA 线驱动,用于经尿道碎石术期间的精确激光照射
  • 批准号:
    24K21116
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
  • 批准号:
    2338171
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Vision-based system identification of highway bridges in service or after earthquakes
基于视觉的公路桥梁在役或震后识别
  • 批准号:
    23KF0241
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Evolutionary study of primate olfaction, taste and color-vision sensor genes by targeted capture and cell-culture-based functional assay
通过靶向捕获和基于细胞培养的功能测定对灵长类动物嗅觉、味觉和色觉传感器基因的进化研究
  • 批准号:
    23H02561
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of high-speed random access vision principle based on mirror array
基于镜面阵列的高速随机存取视觉原理研制
  • 批准号:
    23K18473
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Data assimilation performance analysis of existing bridges by multi-level computer vision-based measurement
基于多级计算机视觉测量的现有桥梁数据同化性能分析
  • 批准号:
    23H01487
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
I-Corps: Computer Vision-Based Intelligent Service Recommendation System
I-Corps:基于计算机视觉的智能服务推荐系统
  • 批准号:
    2223872
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Inference and Model Building for Vision-based Estimation of Transmissive Objects
基于视觉的透射物体估计的推理和模型构建
  • 批准号:
    RGPIN-2017-05638
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Discovery Grants Program - Individual
Vision-based pain detection in masked faces
基于视觉的蒙面面部疼痛检测
  • 批准号:
    572495-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of the Real-time Lifting Assessment tool based on Computer Vision
基于计算机视觉的实时举升评估工具开发
  • 批准号:
    576741-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了