Collaborative research: Neural and cognitive strengthening of conceptual knowledge and reasoning in classroom-based spatial education

合作研究:基于课堂的空间教育中概念知识和推理的神经和认知强化

基本信息

  • 批准号:
    1661074
  • 负责人:
  • 金额:
    $ 15.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-15 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Spatial thinking is a powerful driver of success in the STEM classroom and spatial thinking is a major predictor of future STEM success in the workforce. The brain systems that support spatial thinking have been well mapped by neuroscience to allow clear interpretation of new brain-imaging data. Recent advances in tools used to analyze brain activity allow detection of changes in the brains of students that signify accurate learning of STEM concepts. This advance may open a window onto biomarkers of precisely the type of learning that is the goal of educators. Using these new brain analysis methods, this project, a collaboration involving researchers from James Madison University, Georgetown University, Northwestern University, and Dartmouth College, will investigate how changes in the spatial thinking network support learning of specific STEM concepts, and how changes in the classroom can facilitate changes in the brain related to spatial thinking. This cross-disciplinary project brings together experts in geoscience classroom education, spatial cognition, and the neural bases of learning and reasoning. This team is committed to bridging the conspicuous gap between the laboratory and the high school classroom. A confluence of advances in neuroimaging, and the research team's partnership with Virginia school systems make this effort timely and tractable. Identifying possible effects of sex and STEM-related anxieties on conceptual learning in the brain, and testing the effectiveness of spatial education for reducing disparities, this research will point to critical targets for intervention. The project is funded by the EHR Core Research (ECR) program, which supports work that advances the fundamental research literature on STEM learning.This project seeks to understand the neural mechanisms of spatial learning, to advance of spatial education, and to identify factors that affect disparities in STEM learning and participation. The research team will collect functional magnetic resonance imaging (fMRI) and behavioral data from students before and after learning in a high school geoscience course that uses a novel spatially-based curriculum to teach STEM concepts and spatial reasoning. Pilot data on this spatial curriculum have begun to characterize the underlying cognitive and neural mechanisms at work, and show promising effects of transfer to STEM problem solving and core measures of spatial ability. Consistent with methods that have demonstrated success in the lab (but not yet the classroom), the research team will use multivariate neural representations of a group of highly experienced and specially trained teachers as an expert standard to determine neural markers of students? conceptual knowledge and spatial reasoning. Leveraging recent multivariate pattern analysis (MVPA) and machine-learning advances in brain imaging, the team will compare the neural patterns of students before and after learning to test for a trajectory that moves students closer to expert representations. This project will also test, for the first time, whether it is possible to compare different curricula based on how much they strengthen the representation of a concept in the brain. Similarly, this work will test whether spatial education leads students to engage spatial brain resources for STEM-related reasoning, and seek to compare curricula on this basis. The project will test whether neural data add predictive value to traditional testing (e.g. conventional unit tests) for subsequent retention of conceptual knowledge and spatial reasoning. Assessments of STEM-related anxieties (e.g., math and spatial anxiety) and analyses of sex-related effects on cognitive and neural outcomes will newly characterize factors that influence disparities in STEM learning and participation.
空间思维是STEM课堂成功的强大驱动力,空间思维是未来STEM在劳动力中成功的主要预测因素。支持空间思维的大脑系统已经被神经科学很好地绘制出来,以便对新的大脑成像数据进行清晰的解释。用于分析大脑活动的工具的最新进展允许检测学生大脑中的变化,这意味着准确学习STEM概念。这一进展可能会打开一扇窗户,让人们了解教育工作者的目标正是学习类型的生物标志物。使用这些新的大脑分析方法,该项目涉及来自詹姆斯麦迪逊大学,乔治敦大学,西北大学和达特茅斯学院的研究人员的合作,将调查空间思维网络的变化如何支持特定STEM概念的学习,以及课堂上的变化如何促进与空间思维相关的大脑变化。这个跨学科项目汇集了地球科学课堂教育,空间认知以及学习和推理的神经基础方面的专家。这个团队致力于弥合实验室和高中课堂之间的明显差距。神经影像学的进步,以及研究小组与弗吉尼亚学校系统的合作,使这项工作及时和易于处理。确定性别和STEM相关焦虑对大脑概念学习的可能影响,并测试空间教育对减少差异的有效性,这项研究将指出干预的关键目标。该项目由EHR核心研究(ECR)计划资助,旨在促进STEM学习的基础研究文献的发展。该项目旨在了解空间学习的神经机制,促进空间教育,并确定影响STEM学习和参与差异的因素。研究小组将收集学生在高中地球科学课程学习前后的功能性磁共振成像(fMRI)和行为数据,该课程使用新颖的基于空间的课程来教授STEM概念和空间推理。关于这一空间课程的试点数据已经开始描述工作中的潜在认知和神经机制,并显示出转移到STEM问题解决和空间能力核心指标的良好效果。与在实验室(但尚未在课堂上)取得成功的方法一致,研究小组将使用一组经验丰富且受过专门训练的教师的多元神经表征作为专家标准来确定学生的神经标记物。概念知识和空间推理。利用最近的多元模式分析(MVPA)和机器学习在大脑成像方面的进展,该团队将比较学生学习前后的神经模式,以测试使学生更接近专家表示的轨迹。该项目还将首次测试是否有可能根据不同课程在多大程度上加强了大脑中概念的表征来比较不同课程。同样,这项工作将测试空间教育是否会引导学生利用空间大脑资源进行STEM相关推理,并在此基础上比较课程。该项目将测试神经数据是否为传统测试(例如传统单元测试)增加预测价值,以随后保留概念知识和空间推理。STEM相关焦虑的评估(例如,数学和空间焦虑)以及对认知和神经结果的性别相关影响的分析将重新描述影响STEM学习和参与差异的因素。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Kolvoord其他文献

Robert Kolvoord的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Kolvoord', 18)}}的其他基金

Collaborative Research: Developing neural and behavioral measures to predict long-term STEM learning outcomes from a high-school spatial learning course
合作研究:开发神经和行为测量来预测高中空间学习课程的长期 STEM 学习成果
  • 批准号:
    2201306
  • 财政年份:
    2022
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: Adapting and Implementing a Geospatial High School Course in Career and Technical Education Clusters in Urban Settings
合作研究:在城市环境中职业和技术教育集群中调整和实施地理空间高中课程
  • 批准号:
    1759370
  • 财政年份:
    2018
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Cognitive and Neural Indicators of School-based Improvements in Spatial Problem Solving
合作研究:校本空间问题解决能力改进的认知和神经指标
  • 批准号:
    1420600
  • 财政年份:
    2015
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Standard Grant
Bridging the Valley: A STEP Ahead for STEM Majors
跨越山谷:STEM 专业向前迈出了一步
  • 批准号:
    0756838
  • 财政年份:
    2008
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Continuing Grant
Project VISM -- Visualization in Science and Mathematics
VISM 项目——科学和数学可视化
  • 批准号:
    9819580
  • 财政年份:
    1999
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向任务目标快速识别的飞行员脑-眼-机协同感知融合关键技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
“搭便车”中性粒细胞的ROS响应型多功能基因递送系统的构建及IS后的协同神经保护研究
  • 批准号:
    2025JJ60794
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于非侵入式MI-BCI的脑机协同共享控制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
面向垂直领域的“神经-符号” 多模协同智能体关键技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
父母协同教养对青少年早期内外化问题的双刃剑效应:行为与脑机制研究
  • 批准号:
    2025JJ60211
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
内存高效脉冲神经网络的软硬协同设计 优化研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
面向多智能体协同的联邦图学习安全与 鲁棒性机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
乳香酸、没药萜及其分子配伍调控TRPV1+神经元协同抗炎 镇痛机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于肠道免疫细胞介导的神经炎症研究大建中汤协同氯胺酮治疗抑郁症的增效机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
无人机辅助车联网环境中DNN模型的协同推理与资源配置策略研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2311468
  • 财政年份:
    2023
  • 资助金额:
    $ 15.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了