Taylor Expansion Approximations for Dynamic Programming Problems
动态规划问题的泰勒展开近似
基本信息
- 批准号:1662294
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Operational decision-making in service and manufacturing environments often requires that decisions respond to real-time changes in available resources and system characteristics. Because these operating environments are generally quite complex, capturing the dynamic nature of the system is often very difficult. This project aims to help the decision maker manage dynamic complexity by offering a structured approach to the approximation of dynamic decision problems. The results of this project will advance operational methods in a variety of domains, including healthcare operations and production and distribution of goods and services. The project will educate graduate students engaged in a diverse set of industry-related programs.This project will utilize Stein's method to create novel approximate solution techniques for stochastic dynamic programing (DP) problems. Stein's method has recently been used in the context of queueing models to bound the error when approximating the performance of a queuing system by that of a suitable Brownian model. This project will extend that approach to the study of controlled Markov processes, thus moving beyond performance analysis and into optimization. The research will result in a structured approximation approach that allows for explicit examination of the optimality gap between the true optimal solution (as captured by the Bellman equation) and the optimal solution of a Brownian control problem (as captured by a Hamilton-Jacobi-Bellman equation). If successful, the research will lead to computationally efficient approximation methods for DP problems with explicit guarantees of "near optimality". The research will advance the mathematical understanding of the relationship between Markov decision processes and Brownian control problems beyond the context of queueing
服务和制造环境中的运营决策通常要求决策对可用资源和系统特性的实时变化做出响应。由于这些操作环境通常相当复杂,因此捕获系统的动态特性通常非常困难。该项目旨在通过提供一种结构化的方法来近似动态决策问题,以帮助决策者管理动态复杂性。该项目的成果将推动各个领域的业务方法,包括医疗保健业务以及商品和服务的生产和分销。该项目将教育研究生从事一系列不同的行业相关的程序。该项目将利用斯坦的方法来创建随机动态规划(DP)问题的新的近似解技术。Stein的方法最近被用于排队模型的上下文中,以限制当通过合适的布朗模型来近似排队系统的性能时的误差。这个项目将把这种方法扩展到受控马尔可夫过程的研究,从而超越性能分析,进入优化。该研究将导致一个结构化的近似方法,允许显式检查真正的最优解(由贝尔曼方程捕获)和布朗控制问题的最优解(由汉密尔顿-雅可比-贝尔曼方程捕获)之间的最优性差距。如果成功,研究将导致计算效率的近似方法DP问题的明确保证“近最优”。该研究将推进对马尔可夫决策过程和布朗控制问题之间关系的数学理解,而不仅仅局限于马尔可夫决策过程
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Taylor Expansion of Value Functions
- DOI:10.1287/opre.2019.1903
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Anton Braverman;I. Gurvich;Jun-fei Huang
- 通讯作者:Anton Braverman;I. Gurvich;Jun-fei Huang
Beyond Heavy-Traffic Regimes: Universal Bounds and Controls for the Single-Server Queue
超越大流量制度:单服务器队列的通用边界和控制
- DOI:10.1287/opre.2017.1715
- 发表时间:2018
- 期刊:
- 影响因子:2.7
- 作者:Huang, Junfei;Gurvich, Itai
- 通讯作者:Gurvich, Itai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Itai Gurvich其他文献
Task Switching and Productivity in Collaborative Work: A Field Study of Hospitalists
协作工作中的任务切换和生产力:住院医生的实地研究
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Lu Wang;Itai Gurvich;J. V. Mieghem;K. O’Leary - 通讯作者:
K. O’Leary
HEART FAILURE CARE TRANSITIONS: QUEUING THEORY-BASED COST-EFFECTIVENESS ANALYSIS OF OUTPATIENT CLINIC CAPACITY SIZING
- DOI:
10.1016/s0735-1097(17)35897-7 - 发表时间:
2017-03-21 - 期刊:
- 影响因子:
- 作者:
Raja Kannan Mutharasan;Preeti Kansal;Hannah Alphs Jackson;Allen Anderson;Michael Abecassis;Charles Davidson;Gary Noskin;Itai Gurvich;Jan Van Mieghem;Clyde Yancy - 通讯作者:
Clyde Yancy
The Cost of Impatience in Dynamic Matching: Scaling Laws and Operating Regimes
动态匹配中不耐烦的代价:规模法则和运营机制
- DOI:
10.2139/ssrn.4453900 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Angela Kohlenberg;Itai Gurvich - 通讯作者:
Itai Gurvich
Productivity Losses due to Coordination: An Empirical Study of Generalists in a Hospital
协调导致的生产力损失:对医院全科医生的实证研究
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Lu Wang;Itai Gurvich;J. V. Mieghem;K. O’Leary - 通讯作者:
K. O’Leary
Approaching Process Improvement.
接近流程改进。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.4
- 作者:
Itai Gurvich;R. Mutharasan;Jan A. Van Mieghem - 通讯作者:
Jan A. Van Mieghem
Itai Gurvich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Itai Gurvich', 18)}}的其他基金
Dynamic Matching Problems with Application to Kidney Allocation
动态匹配问题在肾脏分配中的应用
- 批准号:
2137286 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Policy-Robust Processing Networks: Characterization and Design
策略稳健的处理网络:表征和设计
- 批准号:
2139566 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
NSF/FDA SIR: A Modeling Tool for Assessment of Radiological Workflow Prioritization Based on Computer-assisted Diagnosis
NSF/FDA SIR:基于计算机辅助诊断的放射工作流程优先级评估建模工具
- 批准号:
1935809 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Dynamic Matching Problems with Application to Kidney Allocation
动态匹配问题在肾脏分配中的应用
- 批准号:
2010940 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Policy-Robust Processing Networks: Characterization and Design
策略稳健的处理网络:表征和设计
- 批准号:
1856511 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似海外基金
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
- 批准号:
NE/X005003/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Establishing a novel culture system for lymphoid-biased HSC expansion
建立用于淋巴偏向 HSC 扩增的新型培养系统
- 批准号:
24K19206 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tri-State Expansion, Curriculum Evolution, and Equity during BioTechnician Training (Tri ExCEEd BTT)
生物技术人员培训期间的三州扩展、课程演变和公平 (Tri ExCEEd BTT)
- 批准号:
2400830 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
FDSS Track 1: Expansion and Integration of Space Physics at the University of Delaware
FDSS Track 1:特拉华大学空间物理学的扩展和整合
- 批准号:
2347952 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
機能的な膵β細胞量を増加させる「膵β細胞のhealthy expansion」の分子機構の解明
阐明增加功能性胰腺β细胞数量的“胰腺β细胞健康扩张”的分子机制
- 批准号:
23K27652 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on Hadron Resonances by uniformized Mittag-Leffler expansion
均匀 Mittag-Leffler 展开式的强子共振研究
- 批准号:
24K07062 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
- 批准号:
NE/X004864/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
- 批准号:
2411677 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
- 批准号:
NE/X004775/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
- 批准号:
NE/X00418X/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant