CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior

职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装

基本信息

  • 批准号:
    2411677
  • 负责人:
  • 金额:
    $ 65.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Non-Technical SummaryMaterials used in real-world settings are frequently exposed to changes in temperature. For materials used in outdoor applications such as concrete, this is typically due to weather or seasonal changes. For materials used in devices such as computers or electronics, this is due to excess energy that results in heat. Thermal expansion is the response of a material to any change in temperature. The way a material responds to temperature impacts its ability to function. If the thermal expansion behavior of a material is not understood and controlled, failure or fracture is likely to occur as a result of temperature fluctuations. The chemical structures of the molecules and the bonds that hold a solid material together typically dictate the thermal expansion behaviors. The behaviors of materials like concrete are well-understood; however, analogous behaviors for organic (carbon)-based materials are more challenging to predict and design because these materials are held together by weaker forces. Organic materials are becoming more widely used in a variety of fields such as electronics. Balancing high material performance with ideal thermal expansion is critical to such applications. This CAREER project, supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, develops fundamental strategies for controlling the thermal expansion behaviors of organic materials. Specifically, thermal expansion is influenced through the use of dynamic groups, which respond to temperature changes by undergoing motion or by making and breaking the bonds that hold the material together. The strategies developed in this project are expected to influence the design and preparation of novel materials with predictable thermal expansion properties for use in technological applications that advance national prosperity. Integrated with the research plan is a holistic education, mentorship, and outreach program involving underrepresented groups at each education stage from middle school through graduate school. The activities include (1) development and implementation of an annual presentation on 'Thermal Expansion Around Us' at Tech Savvy – a STEM workshop for middle school girls, (2) a traveling lab experiment on molecular structures and solid-state properties for high school students in West Texas, and (3) a STEM career preparation workshop for upper-level undergraduate and graduate students.Technical SummaryThis CAREER project, supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, develops a fundamental understanding of thermal expansion (TE) behaviors in organic crystalline solids through synthesis of novel, dynamic solid-state materials with controllable and predictable TE behaviors. TE is the response of a material to a change in temperature. The chemical structures of the molecules and the interactions that hold the solid together typically dictate TE behavior. However, other mechanisms such as structural flexibility or motion can give rise to unexpected or unique TE. For inorganic or covalent network solids, intermolecular forces are strong, structural assembly is well-controlled in three dimensions, and TE is often predictable. On the other hand, purely organic molecular solids are held together in three dimensions by weaker, noncovalent interactions. Directing self-assembly of individual organic molecules into a solid structure with full control over the noncovalent interactions comprising all crystallographic dimensions is challenging. Noncovalent forces, motion, and flexibility all affect TE in organic molecular solids. Reliably directing, achieving, and controlling solid-state motion, self-assembly, and predicting their influence on TE remains challenging. This CAREER project develops fundamental knowledge and systematic strategies for controlling and tuning TE in organic molecular solids through (1) installation of functional groups capable of undergoing solid-state molecular motion and reliably turning motion on and off, (2) use of reversible solid-state covalent-bond-forming reactions to switch between large and near zero TE behaviors within a single solid, and (3) control over self-assembly of organic molecules in all three crystallographic dimensions using orthogonal noncovalent interactions. The work is expected to advance fundamental knowledge of solid-state motion, reactivity, self-assembly, and TE, and transform the design of functional solid-state materials that exhibit dynamic properties. The educational and outreach activities emphasize a STEM-powered approach to education and career preparation by engaging students in STEM activities at each stage of education from middle school through graduate school. This is achieved through (1) development and implementation of an annual presentation on 'Thermal Expansion Around Us' at Tech Savvy – a STEM workshop for middle school girls, (2) a traveling lab experiment on molecular structures and solid-state properties for high school students in West Texas, and (3) a STEM career preparation workshop for upper-level undergraduate and graduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结在现实环境中使用的材料经常暴露于温度变化。对于室外应用中使用的材料,如混凝土,这通常是由于天气或季节变化。对于计算机或电子设备中使用的材料,这是由于过量的能量导致热量。热膨胀是材料对任何温度变化的响应。材料对温度的反应方式会影响其功能。如果不了解和控制材料的热膨胀行为,则很可能由于温度波动而发生故障或断裂。分子的化学结构和将固体材料保持在一起的键通常决定热膨胀行为。混凝土等材料的行为是众所周知的;然而,有机(碳)基材料的类似行为在预测和设计方面更具挑战性,因为这些材料通过较弱的力结合在一起。有机材料在电子等各种领域的应用越来越广泛。平衡高材料性能与理想的热膨胀对于此类应用至关重要。该职业项目由材料研究部的固态和材料化学计划支持,开发了控制有机材料热膨胀行为的基本策略。具体地说,热膨胀是通过使用动态基团来影响的,动态基团通过运动或通过建立和破坏将材料保持在一起的键来响应温度变化。该项目中开发的策略预计将影响具有可预测热膨胀性能的新型材料的设计和制备,用于促进国家繁荣的技术应用。与研究计划相结合的是一个整体的教育,指导和推广计划,涉及从中学到研究生院的每个教育阶段的代表性不足的群体。这些活动包括(1)在Tech Savvy开发和实施关于“我们周围的热膨胀”的年度演讲-为中学女生举办的STEM研讨会,(2)为西德克萨斯州的高中生举办关于分子结构和固态特性的巡回实验室实验,以及(3)为高年级本科生和研究生举办的STEM职业准备研讨会。技术摘要这个职业项目,在材料研究部固态和材料化学项目的支持下,通过合成具有可控和可预测热膨胀行为的新型动态固态材料,对有机结晶固体中的热膨胀(TE)行为进行了基本了解。TE是材料对温度变化的响应。分子的化学结构和将固体结合在一起的相互作用通常决定TE行为。然而,其他机制,如结构的灵活性或运动可能会导致意外或独特的TE。对于无机或共价网络固体,分子间力很强,结构组装在三维中得到很好的控制,并且TE通常是可预测的。另一方面,纯有机分子固体通过较弱的非共价相互作用在三维空间中保持在一起。将单个有机分子自组装成固体结构,并完全控制包括所有晶体学维度的非共价相互作用是具有挑战性的。非共价力、运动和柔性都会影响有机分子固体中的TE。可靠地指导,实现和控制固态运动,自组装,并预测它们对TE的影响仍然具有挑战性。这个CAREER项目开发了控制和调节有机分子固体中TE的基础知识和系统策略,通过(1)安装能够进行固态分子运动并可靠地打开和关闭运动的官能团,(2)使用可逆的固态共价键形成反应在单个固体中的大TE行为和接近零的TE行为之间切换,和(3)使用正交非共价相互作用控制有机分子在所有三个晶体学维度中的自组装。这项工作预计将推进固态运动,反应性,自组装和TE的基础知识,并改变具有动态特性的功能固态材料的设计。教育和推广活动强调STEM动力的教育和职业准备方法,让学生在从中学到研究生院的每个教育阶段参与STEM活动。这是通过以下方式实现的:(1)在Tech Savvy开发和实施关于“我们周围的热膨胀”的年度演示-为中学女生举办的STEM研讨会,(2)为西德克萨斯州的高中生举办的分子结构和固态特性的巡回实验室实验,(3)一个STEM职业准备工作坊,该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combining Molecular Motion with a 2,6-Diiodo BODIPY to Engineer Highly Anisotropic Thermomechanical Properties in Organic Binary and Ternary Molecular Materials
  • DOI:
    10.1021/acs.cgd.3c01521
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Babak Tahmouresilerd;Jinchun Qiu;Gary C. George;Vivian Woh;M. Crawford Andrews;Shiva Moaven;D. Unruh;Kristin M. Hutchins;Anthony F. Cozzolino
  • 通讯作者:
    Babak Tahmouresilerd;Jinchun Qiu;Gary C. George;Vivian Woh;M. Crawford Andrews;Shiva Moaven;D. Unruh;Kristin M. Hutchins;Anthony F. Cozzolino
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristin Hutchins其他文献

Kristin Hutchins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kristin Hutchins', 18)}}的其他基金

CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
  • 批准号:
    2045506
  • 财政年份:
    2021
  • 资助金额:
    $ 65.14万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Harnessing Dynamic Dipoles for Solid-State Ion Transport
职业:利用动态偶极子进行固态离子传输
  • 批准号:
    2339634
  • 财政年份:
    2024
  • 资助金额:
    $ 65.14万
  • 项目类别:
    Continuing Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
  • 批准号:
    2340918
  • 财政年份:
    2024
  • 资助金额:
    $ 65.14万
  • 项目类别:
    Continuing Grant
CAREER: Solid-state quantum navigation and timekeeping
职业:固态量子导航和计时
  • 批准号:
    2339862
  • 财政年份:
    2024
  • 资助金额:
    $ 65.14万
  • 项目类别:
    Continuing Grant
CAREER: Towards in situ control of BCS-BEC crossover in solid state systems
职业生涯:实现固态系统中 BCS-BEC 交叉的原位控制
  • 批准号:
    2239171
  • 财政年份:
    2023
  • 资助金额:
    $ 65.14万
  • 项目类别:
    Continuing Grant
CAREER: Multi-level Bridge Tapped Resonant (MBTR) Solid-State Transformers (SSTs)
职业:多级桥抽头谐振 (MBTR) 固态变压器 (SST)
  • 批准号:
    2238472
  • 财政年份:
    2023
  • 资助金额:
    $ 65.14万
  • 项目类别:
    Continuing Grant
CAREER: Manipulating Photon Energy by Perovskite-Sensitized Solid-State Upconversion
职业:通过钙钛矿敏化固态上转换操纵光子能量
  • 批准号:
    2237977
  • 财政年份:
    2023
  • 资助金额:
    $ 65.14万
  • 项目类别:
    Continuing Grant
CAREER: Atomic-Scale Origins of Fast Ion Conduction through Complex Solid-State Electrochemical Interfaces
职业:通过复杂固态电化学界面快速离子传导的原子尺度起源
  • 批准号:
    2239598
  • 财政年份:
    2023
  • 资助金额:
    $ 65.14万
  • 项目类别:
    Continuing Grant
CAREER: Regulating the Interface Chemistry of Sodium Ceramic Electrolytes for Solid-State Sodium Metal Batteries
职业:调控固态钠金属电池钠陶瓷电解质的界面化学
  • 批准号:
    2237110
  • 财政年份:
    2023
  • 资助金额:
    $ 65.14万
  • 项目类别:
    Continuing Grant
CAREER: Baird's Polycyclic Anti-Aromatic Chromophores & Application to Engineer Crystalline Dyads for Photon Upconversion in the Solid State
职业生涯:贝尔德的多环反芳香族发色团
  • 批准号:
    2211296
  • 财政年份:
    2022
  • 资助金额:
    $ 65.14万
  • 项目类别:
    Continuing Grant
CAREER: Functional Structure and Dynamics of Complex Carbohydrates Via Sensitivity-Enhanced Solid-State NMR and Database Development
职业:通过灵敏度增强的固态核磁共振和数据库开发研究复杂碳水化合物的功能结构和动力学
  • 批准号:
    2308660
  • 财政年份:
    2022
  • 资助金额:
    $ 65.14万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了