SusChEM: Visible Light-Driven Reduction of Carbon Dioxide using Heavy Metal-Free Colloidal Quantum Dots as Sensitizers
SusChEM:使用不含重金属的胶体量子点作为敏化剂进行可见光驱动的二氧化碳还原
基本信息
- 批准号:1664184
- 负责人:
- 金额:$ 40.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-15 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The use of sunlight to convert carbon dioxide (CO2) to various small molecules that can be used as fuels is a sustainable way to exploit abundant solar energy for use both during day and night. The chemical reactions involved in this conversion are complicated and multi-step, and typically involve the transfer of electrons from one molecule to another. A "photocatalyst" is a species that lowers the energy barriers for, and thereby facilitates, such complex reactions by using light energy to drive chemical reactions. With funding from the Chemical Catalysis Program of the Chemistry Division, Dr. Emily Weiss of Northwestern University is conducting fundamental studies to identify and optimize photocatalyts for CO2 conversion in catalyst designs that comprise molecules adsorbed to the surfaces of semiconductor nanoparticles made of non-toxic, earth abundant materials. Her studies involve both chemical analysis of these hybrid inorganic-organic complexes and laser spectroscopy to monitor their behaviors on ultrafast timescales after excitation with light energy. Dr. Weiss is actively involved in the mentoring of undergraduate researchers on this project, in the development of a new curriculum for General Chemistry at Northwestern University to increase retention of women and minority students under-represented in STEM fields, and in programs like the Gateway Science Workshop, which offers structured study sessions for students in STEM courses, particularly those students with weaker high school preparation. With funding from the Chemical Catalysis Program of the Chemistry Division, Dr. Emily Weiss of Northwestern University is identifying and optimizing the most important thermodynamic and kinetic parameters in the performance of ternary heavy metal-free colloidal CuInX2 (X = S, Se) quantum dots (QDs) as soluble, multi-site, colloidal sensitizers for photocatalysis of the reduction of CO2 in solution. This work illuminates the mechanisms by which specific and unique properties of a colloidal QD sensitizer enhance the performance of a molecular catalyst with known specificity for CO2 reduction, by addressing several fundamental challenges associated with this task, namely: (i) synthesis and surface functionalization of a QD sensitizer with enough reducing power to donate multiple electrons to the co-catalyst; (ii) control of the local concentration of hydrogen ions; (iii) fast hole extraction from the sensitizer to inhibit recombination and photo-oxidative degradation; and (iv) maximal electronic coupling between the sensitizer and the co-catalyst to provide pathways for fast electron delivery. One and two dimensional nuclear magnetic resonance (NMR) spectroscopy, electron microscopy, electrochemical measurements and steady-state and time resolved optical measurements allow for quantitative characterization of the binding affinity for the QD-catalyst pair, the proton (H+) concentration on the QD surface, the degree of adsorption of the catalytic substrates and intermediates, the rate constants for elementary electron and hole transfer steps, and the efficacy of hole scavenging. These techniques complement the gas and liquid chromatography, NMR, and infrared spectroscopy characterization of product distributions and reaction rates. In addition to the societal impact of finding new pathways to produce carbon- and hydrogen-based fuels from sunlight and CO2 using a non-toxic, earth-abundant colloidal catalyst, this work has broad impact in that undergraduates will be involved both in the proposed research and in ongoing curriculum reform of General Chemistry by Dr. Weiss, in order to increase retention of women and under-represented minority students in STEM fields at Northwestern University.
使用阳光将二氧化碳(CO2)转换为可以用作燃料的各种小分子是一种可持续的方法,可利用大量的太阳能在白天和黑夜使用。这种转化涉及的化学反应是复杂且多步的,通常涉及电子从一个分子转移到另一个分子。 “光催化剂”是一种降低能量壁垒的物种,从而促进了这种复杂的反应,通过使用轻能驱动化学反应。借助化学分部的化学催化计划的资助,西北大学的艾米莉·韦斯(Emily Weiss)正在进行基础研究,以识别和优化催化剂设计中的二氧化碳转化的光催化剂,这些催化剂conversion型构成了构成分子的含量,这些分子吸附到了由无毒的,地球含量,地球纳米颗粒的表面上,这些分子是由无毒的,地球上丰富的材料。 她的研究涉及对这些杂交无机有机复合物和激光光谱的化学分析,以监测其在轻度能量激发后对超快时间尺度上的行为。魏斯博士积极参与本科研究人员对该项目的指导,以开发西北大学的一项新课程,以增加在STEM领域的女性和少数族裔学生的保留,以及在Gateway Science工作室等课程中,该课程在STEM科学工作室等课程中为STEM的学生提供了弱小的学生的结构性学习,尤其是那些弱小的学生。 通过化学分部化学催化计划的资助,西北大学的艾米莉·魏斯(Emily Weiss)博士正在确定和优化最重要的热力学和动力学参数,以执行三元重金属无胶体cuinx2(x = s = s,s,s,s,s,qds)的量子(qds)量子,胶体,胶体,胶体敏感性的量子量。这项工作阐明了胶体QD敏化剂的特定和独特特性通过解决与此任务相关的几个基本挑战,即具有已知的二氧化碳挑战,从而增强了分子催化剂的性能,即:(i)具有足够降低QD敏化功率的多种促进剂来供多个coat sopate Electerals so-cot coat soc-cat coat coats coat coat coat coat coat coat coat coat soc-cot coat coat coat coat coat coat coat coat coat coat coat coat coat coat coAt coat coat coat coAt; (ii)控制氢离子的局部浓度; (iii)从敏化剂中提取快速孔以抑制重组和光氧化降解; (iv)敏化器和共催化剂之间的最大电子耦合,以提供快速电子传递的途径。 One and two dimensional nuclear magnetic resonance (NMR) spectroscopy, electron microscopy, electrochemical measurements and steady-state and time resolved optical measurements allow for quantitative characterization of the binding affinity for the QD-catalyst pair, the proton (H+) concentration on the QD surface, the degree of adsorption of the catalytic substrates and intermediates, the rate constants for elementary electron and孔转移步骤,孔清除的功效。这些技术补充了产品分布和反应速率的气相和液相色谱,NMR和红外光谱表征。除了找到新的途径以使用无毒的,地球丰富的胶体催化剂从阳光和二氧化碳中生产碳和氢的燃料的社会影响外,这项工作还具有广泛的影响,因为本科生将涉及拟议的研究,以及在韦斯(Weiss)进行的一般性化学课程中,为了使妇女的持续阶层和卑鄙的妇女居住。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Oxidation of a Molecule by the Biexcitonic State of a CdS Quantum Dot
- DOI:10.1021/acs.jpcc.9b00210
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:Shichen Lian;Joseph A. Christensen;Mohamad S. Kodaimati;Cameron R. Rogers;M. Wasielewski;E. Weiss
- 通讯作者:Shichen Lian;Joseph A. Christensen;Mohamad S. Kodaimati;Cameron R. Rogers;M. Wasielewski;E. Weiss
Quantum Dot‐Catalyzed Photoreductive Removal of Sulfonyl‐Based Protecting Groups
量子点催化光还原去除磺酰基保护基团
- DOI:10.1002/ange.202005074
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Perez, Kaitlyn A.;Rogers, Cameron R.;Weiss, Emily A.
- 通讯作者:Weiss, Emily A.
Viewpoint: Challenges in Colloidal Photocatalysis and Some Strategies for Addressing Them
- DOI:10.1021/acs.inorgchem.7b03182
- 发表时间:2018-04-02
- 期刊:
- 影响因子:4.6
- 作者:Kodaimati, Mohamad S.;McClelland, Kevin P.;Weiss, Emily A.
- 通讯作者:Weiss, Emily A.
Systematic control of the rate of singlet fission within 6,13-diphenylpentacene aggregates with PbS quantum dot templates
使用 PbS 量子点模板系统控制 6,13-二苯基并五苯聚集体中的单线态裂变速率
- DOI:10.1039/c8fd00157j
- 发表时间:2019
- 期刊:
- 影响因子:3.4
- 作者:Wang, Chen;Kodaimati, Mohamad S.;Lian, Shichen;Weiss, Emily A.
- 通讯作者:Weiss, Emily A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Weiss其他文献
Examination of the COVID-19 Pandemic’s Impact on Mental Health From Three Perspectives: Global, Social, and Individual
从全球、社会和个人三个角度审视 COVID-19 大流行对心理健康的影响
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:12.6
- 作者:
Lauren E Thomas;Abigail Emich;Emily Weiss;Corina R Zisman;Katherine Foray;D. Roberts;Emily Page;M. Ernst - 通讯作者:
M. Ernst
Farming, Foreign Holidays, and Vitamin D in Orkney
奥克尼群岛的农业、国外假期和维生素 D
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.7
- 作者:
Emily Weiss;L. Zgaga;S. Read;S. Wild;M. Dunlop;H. Campbell;R. McQuillan;James F. Wilson - 通讯作者:
James F. Wilson
Service dog selection tests: Effectiveness for dogs from animal shelters
服务犬选择测试:对动物收容所的狗的有效性
- DOI:
10.1016/s0168-1591(96)01176-8 - 发表时间:
1997 - 期刊:
- 影响因子:2.3
- 作者:
Emily Weiss;G. Greenberg - 通讯作者:
G. Greenberg
Health Management for Quality of Life of Multiple Sclerosis Patients
- DOI:
10.1093/cdn/nzaa040_086 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:
- 作者:
Emily Weiss;Hyun Kim - 通讯作者:
Hyun Kim
Integrative Levels, the Brain, and the Emergence of Complex Behavior
整合水平、大脑和复杂行为的出现
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
G. Greenberg;T. Partridge;Emily Weiss;M. M. Haraway - 通讯作者:
M. M. Haraway
Emily Weiss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Weiss', 18)}}的其他基金
REU Site: Research Experience for Undergraduates in Nanoscale Science and Engineering
REU网站:纳米科学与工程本科生的研究经验
- 批准号:
1757618 - 财政年份:2019
- 资助金额:
$ 40.86万 - 项目类别:
Standard Grant
A Partnership to Adapt, Implement and Study a Professional Learning Model and Build District Capacity to Improve Science Instruction and Student Understanding
建立伙伴关系,以适应、实施和研究专业学习模式并建设学区能力,以改善科学教学和学生理解
- 批准号:
1720894 - 财政年份:2017
- 资助金额:
$ 40.86万 - 项目类别:
Continuing Grant
Transforming College Teaching: Statewide Implementation of the Faculty Learning Program to Improve STEM Undergraduate Teaching and Learning
转变大学教学:在全州范围内实施教师学习计划,以改善 STEM 本科教学
- 批准号:
1626624 - 财政年份:2016
- 资助金额:
$ 40.86万 - 项目类别:
Standard Grant
Charge Transfer as a Probe of the Permeability of Organic Adlayers on Colloidal Semiconductor Quantum Dots
电荷转移作为胶体半导体量子点上有机吸附层渗透性的探针
- 批准号:
1400596 - 财政年份:2014
- 资助金额:
$ 40.86万 - 项目类别:
Standard Grant
2014 Colloidal Semiconductor Nanocrystals Gordon Research Conference, July 20-25, 2014
2014胶体半导体纳米晶体戈登研究会议,2014年7月20-25日
- 批准号:
1401045 - 财政年份:2014
- 资助金额:
$ 40.86万 - 项目类别:
Standard Grant
REU Site: Research Experience for Undergraduates in Nanoscale Science & Engineering
REU 网站:纳米科学本科生的研究经验
- 批准号:
1359004 - 财政年份:2014
- 资助金额:
$ 40.86万 - 项目类别:
Standard Grant
相似国自然基金
基于窄带隙钛铁矿型过渡金属氧化物的可见光驱动光致形变效应研究
- 批准号:52302138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可见光介导三线态能量转移的sp3碳氢键不对称转化反应研究
- 批准号:22301026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可见光激发Ce掺杂In2S3/In2O3异质结构的载流子输运对气敏性能的调控机制研究
- 批准号:62364012
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
可见光调控苯基桥联1,6-烯炔的串联环化反应构建双官能团化茚类
- 批准号:22361056
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于IV(B)族半导体表面金属化及氮物种转移机制构建的可见-近红外光驱动合成氨体系研究
- 批准号:22309071
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Seeing the light: high-power visible-light generation using silicate fibre
看到光:使用硅酸盐光纤产生高功率可见光
- 批准号:
DP230100617 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别:
Discovery Projects
Water splitting system based on visible light responsive photocatalysts and carbon-based conductors
基于可见光响应光催化剂和碳基导体的水分解系统
- 批准号:
22KF0160 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of visible-light-induced cyclization reactions inside a molecular flask
分子瓶内可见光诱导环化反应的发展
- 批准号:
22KF0104 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Photothermal Catalysis: Using light to thermally generate reactive intermediates with temporal and spatial control
光热催化:利用光热生成具有时间和空间控制的反应中间体
- 批准号:
10713733 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别:
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 40.86万 - 项目类别: