QuBBD: From Personalized Predictions to Better Control of Chronic Health Conditions
QuBBD:从个性化预测到更好地控制慢性健康状况
基本信息
- 批准号:1664644
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The United States spends twice as much annually on health care than the next-highest spender but significantly under-performs in quality of care metrics, such as life expectancy and infant mortality. Hospital care accounts for about a third of U.S. health care spending. It has been estimated that nearly $30 billion in hospital care costs each year are potentially preventable, with about half of that amount due to hospitalizations related to the two major chronic diseases: heart diseases and diabetes. Electronic Health Records, and the emerging digital data from home-based devices, smart phones, and wearables, offer a great opportunity to develop a systematic approach towards better management of chronic conditions in an outpatient setting and the prevention of hospitalizations required to treat acute episodes resulting from poor control of a patient's condition. This project will utilize digital health data to develop predictive models that anticipate future undesirable events, such as hospitalizations, re-admissions, and transitioning to an acute stage of a disease. These predictions will be used to trigger personalized interventions, ranging from increased monitoring and doctor visits to optimized treatment policies adapted to each patient. The project supports a collaboration between mathematical scientists and a physician at a major safety-net hospital, which treats a significant percentage of low-income and underrepresented groups.The research will focus on two broad tasks: (1) predictive analytics, and (2) personalized interventions. Task 1 develops methods for predictions in two time scales, long and medium. These predictions target hospitalizations and rely upon new supervised machine learning approaches that combine classification with clustering as a way of enhancing performance and offering interpretable results. In addition, anomaly detection methods are proposed for shorter-term predictions. Task 2 focuses on interventions seeking to prevent events predicted under Task 1. Interventions include increased monitoring and optimizing treatment policies using Markov Decision Processes and perturbation analysis methods. Methodological advances will include methods for joint clustering and classification, anomaly detection, learning and improving policies for Markov Decision Processes, and perturbation analysis techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国每年在医疗保健上的支出是排名第二的国家的两倍,但在预期寿命和婴儿死亡率等医疗质量指标方面表现明显不佳。医院护理约占美国医疗保健支出的三分之一。据估计,每年近300亿美元的医院护理费用是潜在可以预防的,其中约一半是与两种主要慢性疾病:心脏病和糖尿病有关的住院费用。电子健康记录和来自家庭设备、智能手机和可穿戴设备的新兴数字数据提供了一个很好的机会,可以开发一种系统的方法,以更好地管理门诊环境中的慢性病,并防止因对患者病情控制不善而需要住院治疗急性发作。该项目将利用数字健康数据来开发预测模型,以预测未来的不良事件,如住院、再次住院和过渡到疾病的急性阶段。这些预测将被用来触发个性化干预,范围从增加监测和医生就诊到针对每个患者的优化治疗政策。该项目支持数学科学家和一家大型安全网医院的医生之间的合作,该医院治疗相当大比例的低收入和代表性不足的群体。研究将集中在两个广泛的任务上:(1)预测分析,和(2)个性化干预。任务1开发了两个时间尺度的预测方法,长期和中期。这些预测以住院为目标,并依赖于新的有监督的机器学习方法,这种方法将分类与聚类相结合,作为提高性能和提供可解释结果的一种方式。此外,还提出了用于短期预测的异常检测方法。任务2侧重于设法预防任务1中预测的事件的干预措施。干预措施包括利用马尔可夫决策过程和扰动分析方法加强监测和优化治疗政策。方法方面的进步将包括联合聚类和分类的方法、异常检测、学习和改进马尔可夫决策过程的政策,以及扰动分析技术。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(160)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved prediction of MHC-peptide binding using protein language models.
- DOI:10.3389/fbinf.2023.1207380
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hashemi, Nasser;Hao, Boran;Ignatov, Mikhail;Paschalidis, Ioannis Ch;Vakili, Pirooz;Vajda, Sandor;Kozakov, Dima
- 通讯作者:Kozakov, Dima
A Graph-Based Approach to Generate Energy-Optimal Robot Trajectories in Polygonal Environments
在多边形环境中生成能量最优机器人轨迹的基于图的方法
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Beaver, L.;Tron, R.;Cassandras, C.G.
- 通讯作者:Cassandras, C.G.
Safe Merging Control in Mixed Vehicular Traffic
- DOI:10.23919/acc55779.2023.10156078
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Vahid Hamdipoor;N. Meskin;C. Cassandras
- 通讯作者:Vahid Hamdipoor;N. Meskin;C. Cassandras
Distributionally Robust Multiclass Classification and Applications in Deep Image Classifiers
分布式鲁棒多类分类及其在深度图像分类器中的应用
- DOI:10.1109/icassp49357.2023.10095775
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chen, Ruidi;Hao, Boran;Paschalidis, Ioannis Ch.
- 通讯作者:Paschalidis, Ioannis Ch.
Comparison of Centralized and Decentralized Approaches in Cooperative Coverage Problems with Energy-Constrained Agents
能量受限智能体合作覆盖问题中集中式和分散式方法的比较
- DOI:10.1109/cdc42340.2020.9304270
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Meng, Xiangyu;Sun, Xinmiao;Cassandras, Christos G.;Xu, Kaiyuan
- 通讯作者:Xu, Kaiyuan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ioannis Paschalidis其他文献
Sensor and Actuator Placement for Linear Systems Based on H2 and H∞ Optimization
基于 H2 和 H∞ 优化的线性系统的传感器和执行器放置
- DOI:
10.1002/wcm.622 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Francesco Bullo;P. Antsaklis;Thomas Parisini;Ioannis Paschalidis;R. D. Braatz;Maria Prandini;U. Münz;M. Pfister;P. Wolfrum;D. E. Rivera;S. Deshpande - 通讯作者:
S. Deshpande
A GPT-4o-powered framework for identifying cognitive impairment stages in electronic health records
一个基于 GPT-4o 的框架,用于识别电子健康记录中的认知障碍阶段
- DOI:
10.1038/s41746-025-01834-5 - 发表时间:
2025-07-03 - 期刊:
- 影响因子:15.100
- 作者:
Yu Leng;Yingnan He;Samad Amini;Colin Magdamo;Ioannis Paschalidis;Shibani S. Mukerji;Lidia M. V. R. Moura;M. Brandon Westover;Ana-Maria Vranceanu;Christine S. Ritchie;Deborah Blacker;John R. Dickson;Sudeshna Das - 通讯作者:
Sudeshna Das
Ioannis Paschalidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ioannis Paschalidis', 18)}}的其他基金
PIPP Phase I: Predicting and Preventing Epidemic to Pandemic Transitions
PIPP 第一阶段:预测和预防流行病向大流行病的转变
- 批准号:
2200052 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: A Workshop on Pre-emergence and the Predictions of Rare Events in Multiscale, Complex, Dynamical Systems
协作研究:多尺度、复杂、动态系统中出现前和罕见事件的预测研讨会
- 批准号:
2114393 - 财政年份:2021
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
SCH: INT: Distributed Analytics for Enhancing Fertility in Families
SCH:INT:提高家庭生育能力的分布式分析
- 批准号:
1914792 - 财政年份:2019
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Smart and Connected Health (SCH) PI Workshop, 2017
智能互联健康 (SCH) PI 研讨会,2017 年
- 批准号:
1724990 - 财政年份:2017
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
SHB: Type II (INT): Collaborative Research: Algorithmic Approaches to Personalized Health Care
SHB:II 类 (INT):协作研究:个性化医疗保健的算法方法
- 批准号:
1237022 - 财政年份:2012
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
ITR: COLLABORATIVE RESEARCH: -(NHS+ASE)-(dmc+int): Diagnosis and Assessment of Faults, Misbehavior and Threats in Distributed Systems and Networks
ITR:协作研究:-(NHS ASE)-(dmc int):分布式系统和网络中的故障、不当行为和威胁的诊断和评估
- 批准号:
0426453 - 财政年份:2004
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Planning, Coordination, and Control of Supply Chains
供应链的规划、协调和控制
- 批准号:
0300359 - 财政年份:2003
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
CAREER: Pricing and Resource Allocation in Multiservice Broadband Communication Networks
职业:多服务宽带通信网络中的定价和资源分配
- 批准号:
9983221 - 财政年份:2000
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Admission Control in High Speed Multimedia Networks
高速多媒体网络中的准入控制
- 批准号:
9706148 - 财政年份:1997
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
相似海外基金
Personalized Online Adaptive Learning System
个性化在线自适应学习系统
- 批准号:
23K20186 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Personalized Maternal Care Decision Support System for Underserved Populations
职业:针对服务不足人群的个性化孕产妇护理决策支持系统
- 批准号:
2339992 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
- 批准号:
2340519 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Realizing Human Brain Stimulation of Deep Regions Based on Novel Personalized Electrical Computational Modelling
基于新型个性化电计算模型实现人脑深部刺激
- 批准号:
23K25176 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
- 批准号:
10103541 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
EU-Funded
Modular Laser Sources For Sustainable Production Of Short Personalized Production Series (WAVETAILOR)
用于短个性化生产系列可持续生产的模块化激光源 (WAVETAILOR)
- 批准号:
10091981 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
EU-Funded
5G4PHealth: Enhanced 5G-Powered Platform for Predictive Preventive Personalized and Participatory Healthcare
5G4PHealth:增强型 5G 支持平台,用于预测、预防、个性化和参与式医疗保健
- 批准号:
10093679 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Collaborative R&D
Biomarker-Based Platform for Early Diagnosis of Chronic Liver Disease to Enable Personalized Therapy (LIVERAIM)
基于生物标志物的慢性肝病早期诊断平台,以实现个性化治疗(LIVERAIM)
- 批准号:
10087822 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
EU-Funded
HSI Implementation and Evaluation Project: Increasing Computer Science Undergraduate Retention through Predictive Modeling and Early, Personalized Academic Interventions
HSI 实施和评估项目:通过预测建模和早期个性化学术干预提高计算机科学本科生的保留率
- 批准号:
2345378 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
PFI-RP: Resilient and Energy-Efficient Memory Chips for Enhanced Mobile AI and Personalized Machine Learning
PFI-RP:用于增强移动人工智能和个性化机器学习的弹性和节能内存芯片
- 批准号:
2345655 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant














{{item.name}}会员




