FRG: Collaborative Research: Integrable Probability
FRG:协作研究:可积概率
基本信息
- 批准号:1664650
- 负责人:
- 金额:$ 31.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Much of modern probability research seeks to understand the behavior of large and complex random systems (for instance, growth in disordered media, cracking, turbulent fluids, or traffic flow) with an aim towards developing theories with predictive and statistical value. While one can try to directly model such systems on computers, their size and complexity often render such attempts fruitless. Instead, one can look for models of such systems that are complex enough to display all of the phenomena under study, yet simple enough to admit exact mathematical computation to probe that behavior. Integrable probability is the theory behind discovering and subsequently analyzing such models. This project seeks to unify the area and various recent breakthroughs and in so doing discover a host of new types of integrable probability systems, new tools for their analysis, and new large-scale universal phenomena.Integrable probability is an area of research at the interface between probability, mathematical physics, and statistical physics on the one hand, and representation theory and integrable systems on the other. Integrable probabilistic systems are characterized by two properties: It is possible to write down concise and exact formulas for expectations of a variety of interesting observables of the systems; and asymptotics of the systems, observables, and formulas provide access to exact descriptions of new phenomena and universality classes (containing more than just integrable examples). The discovery and analysis of integrable probabilistic systems hinges upon underlying algebraic structure. These integrable probabilistic systems can be viewed as projections of powerful objects whose origins lie in representation theory and integrable systems. There is a rich history of major breakthroughs in the study of integrable probabilistic systems, including the six-vertex model, Ising model, and more recently certain models in the KPZ universality class. The basic mechanisms at the heart of many of these existing results are Schur / Macdonald processes (built off the structure of symmetric polynomials) and quantum integrable systems (built off solutions to the Yang-Baxter equation and the Bethe ansatz). Each mechanism has produced breakthrough results, such as the recent resolution of the 25-year-old physics conjecture that the KPZ stochastic partial differential equation is in the KPZ universality class. Until recently, these two routes to integrable probability have existed relatively separately. The goal of the proposed project is to create a unified theory of integrable probability, combining and generalizing the methods of Schur / Macdonald processes and quantum integrable systems and, complementarily, extracting new analyzable models and uncovering new probabilistic or physical phenomena.
许多现代概率论研究试图理解大而复杂的随机系统的行为(例如,无序介质中的增长、裂缝、湍流或交通流),目的是发展具有预测和统计价值的理论。虽然人们可以尝试在计算机上直接模拟这样的系统,但它们的大小和复杂性往往使这种尝试无果而终。相反,人们可以寻找这样的系统模型,这些模型足够复杂,可以显示所研究的所有现象,但又足够简单,可以进行精确的数学计算来探测这种行为。可积概率是发现和随后分析这些模型背后的理论。该项目旨在统一该领域和各种最近的突破,并在此过程中发现一系列新型可积概率系统,用于分析的新工具,以及新的大规模普遍现象。可积概率论是概率论、数学物理和统计物理与表示理论和可积系统相结合的一个研究领域。可积概率系统具有两个特性:可以写出简洁而精确的公式来表示系统的各种有趣的可观测值的期望;系统的渐近性、可观测性和公式提供了对新现象和普适性类的精确描述(包含的不仅仅是可积的例子)。可积概率系统的发现和分析取决于其潜在的代数结构。这些可积概率系统可以看作是强大对象的投影,其起源在于表征理论和可积系统。在可积概率系统的研究中有丰富的重大突破的历史,包括六顶点模型,Ising模型,以及最近的KPZ通用性类中的某些模型。许多现有结果的核心基本机制是舒尔/麦克唐纳过程(建立在对称多项式结构之上)和量子可积系统(建立在Yang-Baxter方程和Bethe ansatz方程的解之上)。每种机制都产生了突破性的结果,例如最近解决了25年的物理学猜想,即KPZ随机偏微分方程属于KPZ通用性类。直到最近,这两种可积概率的途径相对独立地存在。该项目的目标是创建一个统一的可积概率理论,结合和推广舒尔/麦克唐纳过程和量子可积系统的方法,并补充提取新的可分析模型和发现新的概率或物理现象。
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lower tail of the KPZ equation
KPZ 方程的下尾部
- DOI:10.1215/00127094-2019-0079
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:Corwin, Ivan;Ghosal, Promit
- 通讯作者:Ghosal, Promit
Large deviations for sticky Brownian motions
- DOI:10.1214/20-ejp515
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Guillaume Barraquand;M. Rychnovsky
- 通讯作者:Guillaume Barraquand;M. Rychnovsky
Intermediate Disorder Regime for Half-Space Directed Polymers
半空间定向聚合物的中间无序状态
- DOI:10.1007/s10955-020-02668-z
- 发表时间:2020
- 期刊:
- 影响因子:1.6
- 作者:Wu, Xuan
- 通讯作者:Wu, Xuan
Stochastic telegraph equation limit for the stochastic six vertex model
随机六顶点模型的随机电报方程极限
- DOI:10.1090/proc/14415
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:Shen, Hao;Tsai, Li-Cheng
- 通讯作者:Tsai, Li-Cheng
Commentary on “Longest increasing subsequences: from patience sorting to the Baik–Deift–Johansson theorem” by David Aldous and Persi Diaconis
- DOI:10.1090/bull/1623
- 发表时间:2018-04
- 期刊:
- 影响因子:1.3
- 作者:Ivan Corwin
- 通讯作者:Ivan Corwin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Corwin其他文献
The q-Hahn Boson Process and q-Hahn TASEP
q-Hahn 玻色子过程和 q-Hahn TASEP
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ivan Corwin - 通讯作者:
Ivan Corwin
Exactly solving the KPZ equation
- DOI:
10.1090/psapm/075/00661 - 发表时间:
2018-04 - 期刊:
- 影响因子:0
- 作者:
Ivan Corwin - 通讯作者:
Ivan Corwin
Harold Widom’s work in random matrix theory
Harold Widom 在随机矩阵理论方面的工作
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.3
- 作者:
Ivan Corwin;P. Deift;A. Its - 通讯作者:
A. Its
A Classical Limit of Noumi's q-Integral Operator
Noumi q-积分算子的经典极限
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Borodin;Ivan Corwin;Daniel Remenik - 通讯作者:
Daniel Remenik
Time Inconsistency and Uncertainty Aversion in Prediction Markets
预测市场中的时间不一致和不确定性厌恶
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Ivan Corwin;Abraham Othman - 通讯作者:
Abraham Othman
Ivan Corwin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivan Corwin', 18)}}的其他基金
Scaling limits of growth in random media
扩大随机介质的增长极限
- 批准号:
2246576 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Continuing Grant
Scaling Limits of Growth in Random Media
扩大随机介质的生长极限
- 批准号:
1811143 - 财政年份:2018
- 资助金额:
$ 31.54万 - 项目类别:
Continuing Grant
Workshop on Transport and Localization in Random Media: Theory and Applications
随机媒体传输和定位研讨会:理论与应用
- 批准号:
1804339 - 财政年份:2018
- 资助金额:
$ 31.54万 - 项目类别:
Standard Grant
CBMS Conference: Dyson-Schwinger Equations, Topological Expansions, and Random Matrices
CBMS 会议:Dyson-Schwinger 方程、拓扑展开式和随机矩阵
- 批准号:
1642595 - 财政年份:2017
- 资助金额:
$ 31.54万 - 项目类别:
Standard Grant
Conference on Quantum Integrable Systems, Conformal Field Theories and Stochastic Processes
量子可积系统、共形场论和随机过程会议
- 批准号:
1637087 - 财政年份:2016
- 资助金额:
$ 31.54万 - 项目类别:
Standard Grant
Exact solvability of the Kardar-Parisi-Zhang stochastic partial differential equation
Kardar-Parisi-Zhang 随机偏微分方程的精确可解性
- 批准号:
1438867 - 财政年份:2014
- 资助金额:
$ 31.54万 - 项目类别:
Standard Grant
Exact solvability of the Kardar-Parisi-Zhang stochastic partial differential equation
Kardar-Parisi-Zhang 随机偏微分方程的精确可解性
- 批准号:
1208998 - 财政年份:2012
- 资助金额:
$ 31.54万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 31.54万 - 项目类别:
Continuing Grant














{{item.name}}会员




