Exact solvability of the Kardar-Parisi-Zhang stochastic partial differential equation

Kardar-Parisi-Zhang 随机偏微分方程的精确可解性

基本信息

  • 批准号:
    1208998
  • 负责人:
  • 金额:
    $ 15.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2014-04-30
  • 项目状态:
    已结题

项目摘要

The Kardar-Parisi-Zhang (KPZ) equation is a non-linear stochastic partial differential equation whose statistical properties are believed to describe a large class of mathematical models including interacting particle systems, random growth models, directed polymers, and branching diffusion processes. The purpose of this project is to make significant progress towards developing a theory of the exact solvability of the KPZ equation. In particular, this theory should lead to exact formulas for the probability distributions of the solution to the KPZ equation when started with various important types of initial data. This project will involve a number of fields of mathematics and this direction has already produced results of independent interest to these fields, which include: Macdonald symmetric function theory, tropical combinatorics and Whittaker functions, and certain quantum integrable systems. Since its discovery two hundred years ago the Gaussian distribution (bell curve) has come to represent one of mathematics greatest societal and scientific contributions ? a robust theory explaining and analyzing much of the randomness inherent in the world. Physical and mathematical systems accurately described in terms of Gaussian statistics are said to be in the Gaussian universality class. This class, however, is not all encompassing. For example, classical extreme value statistics or Poisson statistics better capture the randomness and severity of events ranging from natural disasters to emergency room visits. More recently, significant research efforts have been focused on understanding systems which are not well-described in terms of any of the classically developed statistics. The failure of these systems to conform to classical descriptions is generally due to a non-linear relationship between natural observables and underlying sources of random inputs and noise. A variety of models for complex systems such as growth processes, polymer chains, mass transport, traffic flow, queueing theory, driven gases, and turbulence have been actively studied for over forty years in mathematics, physics, material science, chemistry and biology. All of these systems fail to conform with classical Gaussian statistics, as has been observed through experimental evidence involving turbulent liquid crystals, crystal growth on a thin film, facet boundaries, bacteria colony growth, paper wetting, crack formation, and burning fronts. Surprisingly, despite their differences, all of the systems fall into a new statistical universality class whose properties are described in terms of a single model called the Kardar-Parisi-Zhang (KPZ) equation. The purpose of this project is to develop a statistical understand of the KPZ equation and its universality class.
kardar - paris - zhang (KPZ)方程是一个非线性随机偏微分方程,其统计性质被认为可以描述一大类数学模型,包括相互作用粒子系统、随机生长模型、定向聚合物和分支扩散过程。该项目的目的是在发展KPZ方程的精确可解性理论方面取得重大进展。特别是,当以各种重要类型的初始数据开始时,该理论应该得出KPZ方程解的概率分布的精确公式。这个项目将涉及许多数学领域,这个方向已经产生了对这些领域独立感兴趣的结果,包括:麦克唐纳对称函数理论,热带组合学和惠特克函数,以及某些量子可积系统。自从两百年前高斯分布(钟形曲线)被发现以来,它就代表了数学对社会和科学最伟大的贡献之一。一个强有力的理论,解释和分析了世界上固有的随机性。用高斯统计准确描述的物理和数学系统被称为高斯普适性类。然而,本课程并不是包罗万象的。例如,经典的极值统计或泊松统计可以更好地捕捉从自然灾害到急诊室就诊等事件的随机性和严重性。最近,重要的研究工作集中在理解那些不能很好地用任何经典统计学描述的系统上。这些系统之所以不符合经典描述,通常是由于自然观测值与随机输入和噪声的潜在来源之间存在非线性关系。四十多年来,数学、物理、材料科学、化学和生物学领域对复杂系统的各种模型进行了积极的研究,如生长过程、聚合物链、质量输运、交通流、排队理论、驱动气体和湍流等。所有这些系统都不符合经典的高斯统计,正如通过实验证据所观察到的那样,包括湍流液晶、薄膜上的晶体生长、facet边界、细菌菌落生长、纸张润湿、裂纹形成和燃烧锋。令人惊讶的是,尽管存在差异,所有的系统都属于一个新的统计普世性类,其性质用一个称为kardar - paris - zhang (KPZ)方程的单一模型来描述。这个项目的目的是发展KPZ方程及其普适类的统计理解。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The $q$-Hahn PushTASEP
$q$-Hahn PushTASEP
HALF-SPACE MACDONALD PROCESSES
  • DOI:
    10.1017/fmp.2020.3
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guillaume Barraquand;A. Borodin;Ivan Corwin
  • 通讯作者:
    Guillaume Barraquand;A. Borodin;Ivan Corwin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ivan Corwin其他文献

The q-Hahn Boson Process and q-Hahn TASEP
q-Hahn 玻色子过程和 q-Hahn TASEP
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ivan Corwin
  • 通讯作者:
    Ivan Corwin
Exactly solving the KPZ equation
Harold Widom’s work in random matrix theory
Harold Widom 在随机矩阵理论方面的工作
A Classical Limit of Noumi's q-Integral Operator
Noumi q-积分算子的经典极限
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Borodin;Ivan Corwin;Daniel Remenik
  • 通讯作者:
    Daniel Remenik
Time Inconsistency and Uncertainty Aversion in Prediction Markets
预测市场中的时间不一致和不确定性厌恶
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ivan Corwin;Abraham Othman
  • 通讯作者:
    Abraham Othman

Ivan Corwin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ivan Corwin', 18)}}的其他基金

Scaling limits of growth in random media
扩大随机介质的增长极限
  • 批准号:
    2246576
  • 财政年份:
    2023
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Continuing Grant
Scaling Limits of Growth in Random Media
扩大随机介质的生长极限
  • 批准号:
    1811143
  • 财政年份:
    2018
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Continuing Grant
Workshop on Transport and Localization in Random Media: Theory and Applications
随机媒体传输和定位研讨会:理论与应用
  • 批准号:
    1804339
  • 财政年份:
    2018
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Standard Grant
CBMS Conference: Dyson-Schwinger Equations, Topological Expansions, and Random Matrices
CBMS 会议:Dyson-Schwinger 方程、拓扑展开式和随机矩阵
  • 批准号:
    1642595
  • 财政年份:
    2017
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Integrable Probability
FRG:协作研究:可积概率
  • 批准号:
    1664650
  • 财政年份:
    2017
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Continuing Grant
Conference on Quantum Integrable Systems, Conformal Field Theories and Stochastic Processes
量子可积系统、共形场论和随机过程会议
  • 批准号:
    1637087
  • 财政年份:
    2016
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Standard Grant
Exact solvability of the Kardar-Parisi-Zhang stochastic partial differential equation
Kardar-Parisi-Zhang 随机偏微分方程的精确可解性
  • 批准号:
    1438867
  • 财政年份:
    2014
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Standard Grant

相似海外基金

Solvability of Parabolic Regularity problem in Lebesgue spaces
勒贝格空间中抛物线正则问题的可解性
  • 批准号:
    EP/Y033078/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Research Grant
Quasi self-similar transformation for a semilinear heat equation and its application to the solvability
半线性热方程的拟自相似变换及其在可解性中的应用
  • 批准号:
    23K03179
  • 财政年份:
    2023
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exact Solvability in Random Matrices and Data Sciences
随机矩阵和数据科学中的精确可解性
  • 批准号:
    2152588
  • 财政年份:
    2022
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Continuing Grant
Exact Solvability in Random Matrices and Data Sciences
随机矩阵和数据科学中的精确可解性
  • 批准号:
    2246449
  • 财政年份:
    2022
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Continuing Grant
Solvability and universality in stochastic processes
随机过程的可解性和普适性
  • 批准号:
    FT200100981
  • 财政年份:
    2021
  • 资助金额:
    $ 15.18万
  • 项目类别:
    ARC Future Fellowships
Roots of Polynomials over Infinite Rings with Applications to Cryptography: Investigating Solvability of and Approximation Tools for Polynomial Roots and the Error Bounds of Approximations Used in Rep
无限环上多项式的根及其在密码学中的应用:研究多项式根的可解性和近似工具以及表示中使用的近似的误差界
  • 批准号:
    544226-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Roots of Polynomials over Infinite Rings with Applications to Cryptography: Investigating Solvability of and Approximation Tools for Polynomial Roots and the Error Bounds of Approximations Used in Rep
无限环上多项式的根及其在密码学中的应用:研究多项式根的可解性和近似工具以及表示中使用的近似的误差界
  • 批准号:
    544226-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Roots of Polynomials over Infinite Rings with Applications to Cryptography: Investigating Solvability of and Approximation Tools for Polynomial Roots and the Error Bounds of Approximations Used in Rep
无限环上多项式的根及其在密码学中的应用:研究多项式根的可解性和近似工具以及表示中使用的近似的误差界
  • 批准号:
    544226-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Solvability for a nonlinear heat equation with singular initial data
具有奇异初始数据的非线性热方程的可解性
  • 批准号:
    19K14569
  • 财政年份:
    2019
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Solvability and solutions' analysis of nonlinear elliptic equations from the viewpoint of eigenvalue problems
从特征值问题的角度看非线性椭圆方程的可解性及解分析
  • 批准号:
    19K03591
  • 财政年份:
    2019
  • 资助金额:
    $ 15.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了