New Density Functional Solution for Nondynamic and Strong Correlation

非动态和强相关性的新密度泛函解决方案

基本信息

  • 批准号:
    1665344
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Professor Jing Kong of Middle Tennessee State University (MTSU) is supported by an award from the Chemical Theory, Models and Computational Methods Program in the Chemistry Division to develop more accurate theoretical models for computer simulations of chemical processes. The rapidly increasing power of computers is making it ever more feasible to predict chemical reactivity through simulations. Simulations, in concert with experiment, can accelerate scientific discovery, but this is only possible if the underlying theoretical model is sufficiently accurate. Current prevailing models for electronic interactions are accurate for many, but not all, areas of chemistry. The physical effects they fail to predict accurately are important for accurate descriptions of catalysis, optical materials, and semiconducting and superconducting systems. The goal of this project is to build more accurate theoretical models at the fundamental level. The successful completion of this project expands the scope of quantum-mechanical based simulations and improves the quality and productivity of research in chemical and other physical sciences. The work is being done in the context of a new Computational Science program at MTSU, which is an interdisciplinary program that provides a unique opportunity to recruit students from non-chemistry backgrounds to pursue research in computational chemistry. MTSU has a student body with high percentages of undergraduate, minority and first-generation college students. Undergraduate students participate in computations that benchmark the activity of molecules or by coding parts of the methods. A new molecular modeling course for upper-level undergraduates is being developed and the results of this project can be used for the new course and other undergraduate course work.The strong correlation problem is the last frontier of Kohn-Sham Density Functional Theory (KS-DFT). It accounts for most of the failures of DFT for molecular and material systems. In this work, an accurate treatment of nondynamic/strong correlation is being developed based on single-determinant KS-DFT. The general-purpose functional treats strong correlation to the same degree of accuracy as current mainstream functionals treat weakly correlated molecular and extended systems. It is designed so that it can be implemented with sufficient efficiency for routine chemical applications with accurate treatment of both dynamic and nondynamic correlations. To achieve this goal, a general framework for nondynamic correlation is being developed based on the single-determinant KS scheme, subject to exact conditions. These conditions are specific for nondynamic correlation with degeneracy included and serve as guidelines for the development of a new model functional. Together with the development of an extensive benchmark database for nondynamic and strong correlation, and a new algorithm for efficient implementation, this functional significantly broadens the application of DFT to chemical and materials science problems involving electron correlation of all strengths. The software and the corresponding features produced in this project are made available through open source programs and open source distribution sites such that it can be used with other programs. The availability of the source code also facilitates others to develop new DFT methods. This research is expected to have a major impact on the nascent Computational Science PhD Program at MTSU, one of a handful in the country.
中田纳西州州立大学(MTSU)的Jing Kong教授获得了化学系化学理论、模型和计算方法项目的奖励,以开发更精确的理论模型,用于化学过程的计算机模拟。 随着计算机能力的迅速提高,通过模拟来预测化学反应性变得更加可行。 模拟与实验相结合,可以加速科学发现,但这只有在基础理论模型足够准确的情况下才有可能。 目前流行的电子相互作用模型在许多化学领域是准确的,但不是所有的。 他们未能准确预测的物理效应对于催化、光学材料、半导体和超导系统的准确描述非常重要。 该项目的目标是在基础层面建立更准确的理论模型。该项目的成功完成扩大了基于量子力学的模拟的范围,并提高了化学和其他物理科学研究的质量和生产力。这项工作是在MTSU的一个新的计算科学计划的背景下完成的,这是一个跨学科的计划,提供了一个独特的机会来招募非化学背景的学生从事计算化学的研究。MTSU的学生中本科生、少数民族和第一代大学生的比例很高。本科生参与对分子活性进行基准测试的计算,或通过编码部分方法。本项目的研究成果可用于新课程和其他本科生课程的研究。强相关问题是Kohn-Sham密度泛函理论(KS-DFT)的最后一个前沿问题。 它解释了大多数DFT的分子和材料系统的失败。在这项工作中,一个准确的治疗非动态/强相关性正在开发的基础上单行列式KS-DFT。通用泛函处理强相关性的准确度与当前主流泛函处理弱相关分子和扩展系统的准确度相同。它的设计,使它可以实现足够的效率与常规化学应用的动态和非动态相关性的准确治疗。为了实现这一目标,非动态相关性的一般框架正在开发的基础上的单决定KS计划,受到确切的条件。这些条件是特定的非动态相关性与退化包括和作为一个新的模型功能的发展的指导方针。随着一个广泛的基准数据库的非动态和强相关性的发展,以及一个新的算法,有效的实施,这个功能显着拓宽DFT的应用,涉及电子相关的所有强度的化学和材料科学问题。 该项目中产生的软件和相应功能通过开源程序和开源分发网站提供,以便可以与其他程序一起使用。源代码的可用性也有助于其他人开发新的DFT方法。这项研究预计将对MTSU新生的计算科学博士项目产生重大影响,该项目是该国为数不多的项目之一。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient spherical surface integration of Gauss functions in three-dimensional spherical coordinates and the solution for the modified Bessel function of the first kind
三维球坐标下高斯函数的高效球面积分及第一类修正贝塞尔函数的解
  • DOI:
    10.1007/s10910-020-01204-4
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Wang, Yiting;Kong, Jing
  • 通讯作者:
    Kong, Jing
Correcting the Charge Delocalization Error of Density Functional Theory
密度泛函理论电荷离域误差的修正
Analyzing cases of significant nondynamic correlation with DFT using the atomic populations of effectively localized electrons
使用有效局域电子的原子群来分析与 DFT 显着非动态相关的情况
  • DOI:
    10.1007/s00214-022-02871-z
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Lewis, Conrad;Proynov, Emil;Yu, Jianguo;Kong, Jing
  • 通讯作者:
    Kong, Jing
Performance of new density functionals of nondynamic correlation on chemical properties
非动态关联的新密度泛函在化学性质上的表现
  • DOI:
    10.1063/1.5082745
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Matthew;John, Dwayne;Yu, Jianguo;Proynov, Emil;Liu, Fenglai;Janesko, Benjamin G.;Kong, Jing
  • 通讯作者:
    Kong, Jing
Model DFT exchange holes and the exact exchange hole: Similarities and differences
模型 DFT 交换孔和精确交换孔:异同
  • DOI:
    10.1063/5.0031995
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Yiting;Proynov, Emil;Kong, Jing
  • 通讯作者:
    Kong, Jing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Kong其他文献

Self-Calibration of Catadioptric Camera with Two Planar Mirrors from Silhouettes
带有两个平面镜的折反射相机的轮廓自校准
Unraveling the Correlation between Raman and Photoluminescence in Monolayer MoS2 through Machine‐Learning Models
通过机器学习模型揭示单层 MoS2 中拉曼和光致发光之间的相关性
  • DOI:
    10.1002/adma.202202911
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Ang;L. G. P. Martins;Pin;Zhantao Chen;Ji;Mantian Xue;Jinchi Han;Nannan Mao;Ming;T. Palacios;V. Tung;Jing Kong
  • 通讯作者:
    Jing Kong
Sequential Big Data-Based Macroeconomic Forecast for Industrial Value Added
基于大数据的工业增加值宏观经济序列预测
Seventy years of evidence on the efficacy and safety of drugs for treating leprosy: a network meta-analysis.
七十年关于麻风病药物疗效和安全性的证据:网络荟萃分析。
  • DOI:
    10.1016/j.jinf.2023.02.019
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiaru Yang;Jing Kong;Bingxue Li;Zhenhua Ji;Jingjing Chen;Meixiao Liu;Yuxin Fan;L. Peng;Jieqin Song;Xinya Wu;Li Gao;Weijiang Ma;Yan Dong;Suyi Luo;Aihua Liu;Fukai Bao
  • 通讯作者:
    Fukai Bao
Automatic Object Cosegmentation in Sparse Multiview Images
稀疏多视图图像中的自动对象协同分割

Jing Kong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Kong', 18)}}的其他基金

Collaborative Research: Nanostructured Conductive Tin Oxide for High-Efficiency Light Trapping in Thin Films and Photonic Devices
合作研究:用于薄膜和光子器件中高效光捕获的纳米结构导电氧化锡
  • 批准号:
    1509197
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Spectroscopic Studies on Layered Materials
层状材料的光谱研究
  • 批准号:
    1507806
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Chemical Vapor Deposition Synthesis of Graphene: Science, Application and Education
职业:了解石墨烯的化学气相沉积合成:科学、应用和教育
  • 批准号:
    0845358
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
SBIR PHASE II: Gridless Density Functional Calculations
SBIR 第二阶段:无网格密度泛函计算
  • 批准号:
    9708206
  • 财政年份:
    1999
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SBIR Phase II: A Fast Hybrid Fourier/Real Space Algorithm for Coulomb Energies
SBIR 第二阶段:库仑能量的快速混合傅里叶/实空间算法
  • 批准号:
    9531459
  • 财政年份:
    1996
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

A new computational tool to extend the applicability of density-functional theory
扩展密度泛函理论适用性的新计算工具
  • 批准号:
    506019-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    University Undergraduate Student Research Awards
The development of new density functional based methods and their application to catalysis
新密度泛函方法的发展及其在催化中的应用
  • 批准号:
    1562-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
The development of new density functional based methods and their application to catalysis
新密度泛函方法的发展及其在催化中的应用
  • 批准号:
    1562-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
The development of new density functional based methods and their application to catalysis
新密度泛函方法的发展及其在催化中的应用
  • 批准号:
    1562-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Improved density functional approximations from a new model of the uniform electron gas
均匀电子气新模型改进的密度泛函近似
  • 批准号:
    DP120104740
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
A New Real-Space Finite Element Method to Solve the Kohn-Sham Equations of Density Functional Theory
求解密度泛函理论Kohn-Sham方程的新实空间有限元方法
  • 批准号:
    0811025
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
New Numerical Solutions for Density Functional Theory
密度泛函理论的新数值解
  • 批准号:
    7284875
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
New Numerical Solutions for Density Functional Theory
密度泛函理论的新数值解
  • 批准号:
    6882569
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
New Numerical Solutions for Density Functional Theory
密度泛函理论的新数值解
  • 批准号:
    7159465
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
New directions in density-functional theory
密度泛函理论的新方向
  • 批准号:
    262010-2003
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了