A New Real-Space Finite Element Method to Solve the Kohn-Sham Equations of Density Functional Theory
求解密度泛函理论Kohn-Sham方程的新实空间有限元方法
基本信息
- 批准号:0811025
- 负责人:
- 金额:$ 4.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-10-01 至 2011-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
First principles (ab initio) quantum mechanical simulations based on Kohn-Sham density functional theory (DFT) are a vital component of modern materials research. The parameter free, quantum mechanical nature of the theory facilitates both fundamental understanding and robust predictions across the gamut of materials systems, from metallic actinides to insulating organics.However, the solution of the equations of DFT (coupled Schrodinger and Poissonequations) is a formidable task and this has severely limited the range of materials systems that can be investigated by such rigorous, quantum mechanical means. Current state-of-the-art approaches for DFT calculations extend to more complex problems by adding more grid points (finite-difference methods) or basis functions (planewave and finite-element methods) without regard to the nature of the complexity, leading to substantial inefficiencies in the treatment of highly inhomogeneous systems such as those involving first-row, transition-metal or actinide atoms. This project will overcome this basic limitation of current approaches by employing partition-of-unity techniques in finite-element analysis to build the known atomic physics into the solution process, thus substantially reducing the degrees of freedom required and increasing the size of problems that can be addressed.The electronic structure and fundamental properties (mechanical, electrical, magnetic, and optical) of materials are obtained via efficient and accurate solutions of the equations of density functional theory. By virtue of its generality, the proposed partition-of-unity finite element method for electronic-structure calculations has the potential to change the way the largest, most complex quantum mechanical calculations are done, thereby paving the way for new applications in metallic, biological, and nanostructural materials that were not possible before. The external collaboration with Dr. John Pask at LLNL will lead to the development of an optimized, fully self-consistent implementation, well-suited to large-scale parallel computational platforms. This collaboration greatly strengthens the likelihood of maximum impact with the realization of faster computational times on complex simulations, such as melting of d- and f-electron systems, equation of state studies, and structure and energetics of defects in new materials.
基于Kohn-Sham密度泛函理论(DFT)的第一性原理(ab initio)量子力学模拟是现代材料研究的重要组成部分。 该理论的无参数量子力学性质有助于对从金属锕系元素到绝缘有机物的所有材料系统的基本理解和可靠预测。然而,DFT方程(耦合薛定谔方程和泊松方程)的求解是一项艰巨的任务,这严重限制了可以通过这种严格的量子力学手段研究的材料系统的范围。目前最先进的DFT计算方法通过添加更多的网格点(有限差分法)或基函数(平面波和有限元法)而不考虑复杂性的性质,从而扩展到更复杂的问题,导致在处理高度不均匀的系统时效率低下,例如涉及第一行,过渡金属或锕系原子的系统。该项目将克服目前方法的这一基本限制,在有限元分析中采用单位分割技术,将已知的原子物理学纳入求解过程,从而大大减少所需的自由度,增加可以解决的问题的规模。通过密度泛函理论方程的有效和精确的解,可以获得材料的力学、电学、磁学和光学性质。由于其通用性,所提出的用于电子结构计算的单位分割有限元方法有可能改变最大,最复杂的量子力学计算的方式,从而为金属,生物和纳米结构材料中的新应用铺平了道路。与LLNL的John Pask博士的外部合作将导致开发一个优化的,完全自洽的实现,非常适合大规模并行计算平台。这种合作大大加强了最大影响的可能性,实现了更快的计算时间对复杂的模拟,如熔化的d-和f-电子系统,状态方程的研究,以及结构和能量的缺陷在新材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natarajan Sukumar其他文献
Natarajan Sukumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natarajan Sukumar', 18)}}的其他基金
Robust Polyhedral Finite Element Methods for Pervasive Fracture Simulations
用于普遍断裂模拟的鲁棒多面体有限元方法
- 批准号:
1334783 - 财政年份:2013
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
Workshop on Barycentric Coordinates in Graphics Processing and Finite/Boundary Element Methods
图形处理中的重心坐标和有限/边界元方法研讨会
- 批准号:
1202525 - 财政年份:2012
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
Information-Theoretic Meshfree Approximation Schemes in Solid Mechanics
固体力学中的信息论无网格近似方案
- 批准号:
0626481 - 财政年份:2006
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
Collaborative Proposal: SGER: Conforming Polygonal Finite Elements
协作提案:SGER:相容多边形有限元
- 批准号:
0352654 - 财政年份:2004
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
US-France Cooperative Research: Computational Model for Three-Dimensional Non-Planar Crack Growth
美法合作研究:三维非平面裂纹扩展计算模型
- 批准号:
0233373 - 财政年份:2003
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
相似国自然基金
Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
- 批准号:30600737
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
- 批准号:60608018
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
- 批准号:
23K11120 - 财政年份:2023
- 资助金额:
$ 4.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Real-time reconstruction of omnidirectional virtual space by holography
全息实时重建全向虚拟空间
- 批准号:
23H03448 - 财政年份:2023
- 资助金额:
$ 4.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Weyl groups and Weyl chamber associated to a Cartan decomposition for reductive real spherical homogeneous space
与还原实球形均匀空间的嘉当分解相关的韦尔群和韦尔室
- 批准号:
23K03037 - 财政年份:2023
- 资助金额:
$ 4.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synchronous Behavior Quantification for Real-Time Evacuation Wayfinding System in Large Enclosed Space Fires
大型封闭空间火灾实时疏散寻路系统的同步行为量化
- 批准号:
23K17806 - 财政年份:2023
- 资助金额:
$ 4.8万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Real-space and dynamical imaging of molecular orbitals by means of field emission microscopy
通过场发射显微镜对分子轨道进行实空间和动态成像
- 批准号:
23K04516 - 财政年份:2023
- 资助金额:
$ 4.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory of spin current phenomena utilizing the superconducting vortex as a real-space topological defect
利用超导涡旋作为实空间拓扑缺陷的自旋流现象理论
- 批准号:
22H01941 - 财政年份:2022
- 资助金额:
$ 4.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Real space-time observation of electron-phonon coupling in lead halide perovskites by ultrafast nanoscopy
超快纳米显微镜对卤化铅钙钛矿电子声子耦合的实时时空观测
- 批准号:
22K14653 - 财政年份:2022
- 资助金额:
$ 4.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a spin pressure detection probe and real space spin mapping method
自旋压力检测探针和实空间自旋映射方法的开发
- 批准号:
22K18934 - 财政年份:2022
- 资助金额:
$ 4.8万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
SCH: Detecting and mapping stress patterns across space and time: Multimodal modeling of individuals in real-world physical and social work environments
SCH:检测和映射跨空间和时间的压力模式:现实世界物理和社会工作环境中个体的多模态建模
- 批准号:
2204942 - 财政年份:2022
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
Research on realizing contact and co-creation between real space and virtual space in online contents
网络内容中实现真实空间与虚拟空间的接触与共创研究
- 批准号:
22K12337 - 财政年份:2022
- 资助金额:
$ 4.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)