Combinatorial and Tropical Degenerations of Classical Moduli Spaces
经典模空间的组合和热带退化
基本信息
- 批准号:1700194
- 负责人:
- 金额:$ 13.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Tropical geometry is a young and rapidly growing area in mathematics, rooted in algebraic geometry, complex analysis, commutative algebra, and combinatorics, with applications in computer science, biology, and statistical physics, in addition to other areas of mathematics. The recent decade has seen tremendous development in the subject that both established the field as an area in its own right and unveiled its deep connections to numerous branches of pure and applied mathematics. Moduli spaces are spaces of parameters that classify algebro-geometric mathematical objects, such as varieties, maps between varieties, and vector bundles. This research project aims at providing a new combinatorial perspective on classical moduli spaces and their interplay with nonarchimedean analytic geometry. Computational challenges in this direction are its driving force. The primary goal is to deepen understanding of these objects and develop new techniques to analyze such abstract spaces through concrete computations in tropical geometry. Several topics investigated in this project witness the interdisciplinary nature of the subject and are suitable for research in collaboration with graduate students.Tropical geometry provides a framework for solving algebro-geometric problems using concrete combinatorial tools: algebraic varieties are replaced by weighted, balanced polyhedral complexes. These objects preserve just enough data about the original varieties to remain meaningful, while discarding much of their complexity. Their combinatorics depends strongly on the embeddings of our varieties. By contrast, the Berkovich space or the space of valuations is independent of all such choices. By choosing appropriate coordinates, the geometry and topology of these valuations are reflected in rich combinatorial properties on the polyhedral side, including connectedness, shellability, etc. Thus, the intricacies of the original space turn into exciting combinatorial problems. Tropicalizations resulting from these nice embeddings are said to be faithful. The project aims at developing certificates for local faithfulness by means of initial (Groebner) degenerations of the variety. The notion of faithfulness near that point then turns into desirable properties of this degeneration. Not surprisingly, validating these properties requires a deep understanding of the combinatorics and geometry of the initial degenerations. Thus, the need to find effective methods for constructing or detecting faithfulness is at the core of tropical geometry. The project will develop such program for several important classes of examples: Grassmannians, moduli of curves, del Pezzo surfaces, Fano schemes and cluster varieties.
热带几何是数学中一个年轻且快速发展的领域,它植根于代数几何、复分析、交换代数和组合数学,在计算机科学、生物学和统计物理学以及其他数学领域都有应用。近十年来,这一学科取得了巨大的发展,既确立了这一领域本身的地位,又揭示了它与纯数学和应用数学众多分支的深刻联系。模空间是对代数几何数学对象进行分类的参数空间,例如变种,变种之间的映射和向量丛。本研究计画旨在提供一个新的组合观点,探讨古典模空间及其与非阿基米德解析几何的关系。在这个方向上的计算挑战是它的驱动力。主要目标是加深对这些物体的理解,并开发新技术,通过热带几何中的具体计算来分析这些抽象空间。在这个项目中调查的几个主题见证了学科的跨学科性质,适合与研究生合作研究。热带几何提供了一个框架,使用具体的组合工具解决代数几何问题:代数簇被取代的加权,平衡多面体复形。这些对象只保留了足够的关于原始变种的数据,以保持有意义,同时丢弃了它们的大部分复杂性。它们的组合学很大程度上依赖于我们的变种的嵌入。与此相反,伯科维奇空间或估值空间独立于所有这些选择。通过选择适当的坐标,这些估值的几何和拓扑结构反映在丰富的组合性质的多面体一侧,包括连通性,shellability等,因此,原来的空间的复杂性变成令人兴奋的组合问题。由这些漂亮的嵌入产生的热带化被认为是忠实的。该项目旨在通过品种的初始(Groebner)退化来开发当地忠实度证书。在这一点附近,忠诚的概念就变成了这种堕落的可取属性。毫不奇怪,验证这些性质需要对初始退化的组合学和几何学有深刻的理解。因此,需要找到有效的方法来构建或检测忠实性是热带几何的核心。该项目将为几个重要类别的例子开发这样的程序:格拉斯曼,曲线的模量,德尔佩佐曲面,法诺计划和集群品种。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Initial degenerations of Grassmannians
格拉斯曼人的最初退化
- DOI:10.1007/s00029-021-00679-6
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Corey, Daniel
- 通讯作者:Corey, Daniel
Combinatorics and Real Lifts of Bitangents to Tropical Quartic Curves
热带四次曲线双切线的组合学和实升力
- DOI:10.1007/s00454-022-00445-1
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Cueto, Maria Angelica;Markwig, Hannah
- 通讯作者:Markwig, Hannah
Tropical geometry of genus two curves
属两条曲线的热带几何
- DOI:10.1016/j.jalgebra.2018.08.034
- 发表时间:2019
- 期刊:
- 影响因子:0.9
- 作者:Cueto, Maria Angelica;Markwig, Hannah
- 通讯作者:Markwig, Hannah
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Cueto其他文献
The discovery and characterization of an interleukin 6 cytokine family antagonist protein from a marine sponge, Callyspongia sp.
来自海绵 (Callyspongia sp) 的白细胞介素 6 细胞因子家族拮抗剂蛋白的发现和表征。
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Jane Peppard;P. Loo;Matthew A. Sills;Lawrence P. Wennogle;Amy Wright;Amy Wright;Shirley Pomponi;Shirley Pomponi;Maria Cueto - 通讯作者:
Maria Cueto
Maria Cueto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Cueto', 18)}}的其他基金
Combinatorial and Tropical Degenerations of del Pezzo Surfaces and Their Moduli
del Pezzo 表面的组合和热带退化及其模量
- 批准号:
1954163 - 财政年份:2020
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
相似国自然基金
Tropical矩阵乘法半群的代数性质及应用
- 批准号:12101280
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tropical 矩阵代数的半群和半环理论与2-闭置换群的研究
- 批准号:11971383
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
涉及复微分差分和Tropical的值分布与函数方程研究
- 批准号:11661052
- 批准年份:2016
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
Tropical矩阵半群和Tropical矩阵群
- 批准号:11571278
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
- 批准号:
NE/Z000246/1 - 财政年份:2025
- 资助金额:
$ 13.5万 - 项目类别:
Research Grant
Cloud immersion and the future of tropical montane forests
云沉浸和热带山地森林的未来
- 批准号:
EP/Y027736/1 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Fellowship
Computational Tropical Geometry and its Applications
计算热带几何及其应用
- 批准号:
MR/Y003888/1 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Fellowship
Postdoctoral Fellowship: EAR-PF: Assessing the net climate impact of tropical peatland restoration: the role of methane
博士后奖学金:EAR-PF:评估热带泥炭地恢复对气候的净影响:甲烷的作用
- 批准号:
2305578 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Fellowship Award
NSF Postdoctoral Fellowship in Biology: Was there a Tropical Forest in North America after the end-Cretaceous Extinction?
美国国家科学基金会生物学博士后奖学金:白垩纪末期灭绝后北美是否存在热带森林?
- 批准号:
2305812 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Fellowship Award
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
- 批准号:
2303525 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
EMBRACE-AGS-Growth: Diagnosing Kinematic Processes Responsible for Precipitation Distributions in Tropical Cyclones
EMBRACE-AGS-Growth:诊断热带气旋降水分布的运动过程
- 批准号:
2409475 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Travel Grant: Workshop on Impacts of Unusual Weather Events and Climate Anomalies on a Tropical Rainforest
旅行补助金:异常天气事件和气候异常对热带雨林的影响研讨会
- 批准号:
2340946 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Collaborative Research: Characterizing Atmospheric Tropical-waves of the Lower Stratosphere with Reel-down Atmospheric Temperature Sensing for Strateole-2--RATS Chasing CATS!
合作研究:利用 Strateole-2 的卷轴大气温度传感来表征平流层下部的大气热带波——RATS 追逐 CATS!
- 批准号:
2335083 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Collaborative Research: Characterizing Atmospheric Tropical-waves of the Lower Stratosphere with Reel-down Atmospheric Temperature Sensing for Strateole-2--RATS Chasing CATS!
合作研究:利用 Strateole-2 的卷轴大气温度传感来表征平流层下部的大气热带波——RATS 追逐 CATS!
- 批准号:
2335082 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant