EAGER/Collaborative Research: Center-of-Mass Control for Expressive and Effective Movement in Bipedal Robots
EAGER/协作研究:双足机器人富有表现力和有效运动的质心控制
基本信息
- 批准号:1701295
- 负责人:
- 金额:$ 13.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This EArly-concept Grant for Exploratory Research (EAGER) collaborative project will apply insights from the study of human athletes and dancers to enable similarly effective and expressive movement in humanoid robots. The objective is to create the capability for such movement without duplicating the full complexity and articulation of the human torso. Specifically, the project will implement a novel mechanism for shifting a heavy mass that shifts the robot center of mass independently of limb movements using novel muscle-like actuators, and evaluate the results based on a formal system of movement analysis developed for dance, athletics, and physical therapy. In addition to improving the robot's effectiveness at accomplishing locomotion, i.e., a walking gait, these capabilities will provide new channels for communication between robots and humans, i.e., modulating the style of the walking gait. Humans make unconscious inferences about attitude and intent from observing movement. For example, a robot co-worker will be more effective if its movements communicate trustworthiness and competence to its human partners, and a robot first-responder will be more effective if its movements communicate confidence and leadership during an emergency situation. This project incorporates the interplay of art and technology into outreach activities, such as using dance movements to understand fundamentals of robot locomotion. This project takes a novel approach to generating dynamic walking in a humanoid robot, by exploiting the dynamics of a novel, core-located rolling ball-and-tray actuation mechanism arising from exploration of embodied movement theory. The impedance of the actuator is varied in real time, modulating the robot dynamics to produce qualitatively different excitations. The focus of the project is on controlling the expressive character of robot gait, with explicit comparison to human movement. The goals of the project are to explore the role of center-of-mass control in human walking and to demonstrate the feasibility of the approach for bipedal robotic walking through modeling, simulation, and an initial prototype. The work will model and validate the ball-and-tray actuator via a set of motion primitives designed in accordance with Bartenieff Fundamentals, a formal system of movement analysis. The research team brings together experts in movement science, dynamic walking, and muscle-like actuation. In addition to improving robot performance, this work has the potential to increase the bandwidth of robot-human communications. Expressive movement can convey many different emotional contexts, including urgency, calm, enthusiasm, confidence, et cetera. The ability to engineer these contexts into robot movement has many potential applications in human facing scenarios.
EARLY概念探索性研究资助(EAGER)合作项目将应用人类运动员和舞蹈家研究的见解,使人形机器人能够进行类似的有效和富有表现力的运动。目标是创造这种运动的能力,而不复制人类躯干的全部复杂性和关节。具体来说,该项目将实现一种新的机制,用于转移一个沉重的质量,使用新型的肌肉状致动器独立于肢体运动转移机器人质心,并根据为舞蹈,田径和物理治疗开发的正式运动分析系统评估结果。除了提高机器人完成运动的效率,即,步行步态,这些能力将为机器人和人类之间的通信提供新的渠道,即,调节行走步态的风格。人类通过观察运动,对态度和意图做出无意识的推断。例如,如果机器人的动作向人类伙伴传达了可信度和能力,那么机器人同事将更有效,如果机器人的动作在紧急情况下传达了信心和领导力,那么机器人第一响应者将更有效。该项目将艺术和技术的相互作用融入到推广活动中,例如使用舞蹈动作来了解机器人运动的基本原理。该项目采取了一种新的方法来产生动态行走的人形机器人,通过利用一种新的,核心定位的滚动球和托盘驱动机制的动力学所产生的探索体现运动理论。致动器的阻抗在真实的时间内变化,调制机器人动力学以产生定性不同的激励。该项目的重点是控制机器人步态的表达特征,与人类运动进行明确的比较。该项目的目标是探索质心控制在人类行走中的作用,并通过建模,仿真和初始原型来证明双足机器人行走方法的可行性。这项工作将建模和验证球和托盘致动器通过一组运动基元设计的Bartenieff基本原理,一个正式的运动分析系统。该研究团队汇集了运动科学、动态行走和肌肉样驱动方面的专家。除了提高机器人的性能外,这项工作还有可能增加机器人与人类通信的带宽。表情动作可以传达许多不同的情感背景,包括紧迫感、平静、热情、自信等等。将这些背景设计成机器人运动的能力在面向人类的场景中具有许多潜在的应用。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Choreographic and Somatic Approaches for the Development of Expressive Robotic Systems
- DOI:10.3390/arts7020011
- 发表时间:2017-12
- 期刊:
- 影响因子:0
- 作者:A. LaViers;Catie Cuan;Madison Heimerdinger;Umer Huzaifa;Catherine Maguire;R. McNish;Alexandra Q. Nilles;I. Pakrasi;Karen Bradley;Kim Brooks Mata;Novoneel Chakraborty;I. Vidrin;Alexander Zurawski
- 通讯作者:A. LaViers;Catie Cuan;Madison Heimerdinger;Umer Huzaifa;Catherine Maguire;R. McNish;Alexandra Q. Nilles;I. Pakrasi;Karen Bradley;Kim Brooks Mata;Novoneel Chakraborty;I. Vidrin;Alexander Zurawski
Influence of Environmental Context on Recognition Rates of Stylized Walking Sequences
环境背景对风格化步行序列识别率的影响
- DOI:10.1007/978-3-319-70022-9_27
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Heimerdinger, Madison;LaViers, Amy
- 通讯作者:LaViers, Amy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy LaViers其他文献
Amy LaViers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy LaViers', 18)}}的其他基金
I-Corps: Context-Aware Interactive (CAI) Robotic Platform
I-Corps:情境感知交互式 (CAI) 机器人平台
- 批准号:
1834893 - 财政年份:2018
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
I-Corps: Easy-to-Use Software for Automation
I-Corps:易于使用的自动化软件
- 批准号:
1624112 - 财政年份:2016
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant














{{item.name}}会员




