Hankel Transform, Langlands Functoriality and Functional Equation of Automorphic L-Functions
自同构 L 函数的 Hankel 变换、Langlands 函性和泛函方程
基本信息
- 批准号:1702380
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a celebrated memoir of 1860, Riemann studied a function known as the zeta function, whose properties imply an approximate formula for the number of prime numbers less than a given number. The optimal formula, still unproved, depends on the Riemann hypothesis on the location of zeros of the zeta function. Prior to the formulation of his celebrated hypothesis, Riemann stipulated a symmetry of the zeta function in the form of a functional equation. Thanks to the development of number theory following Riemann's memoir, we know that there is a large family of functions which includes the zeta function; these functions should encode numerical information about systems of polynomial equations, such as the number of their solutions modulo a prime number as the prime number varies. These functions should satisfy a generalized form of the Riemann hypothesis as well as a functional equation. In the early 1970s, Langlands proposed a visionary program predicting that all these functions can be viewed from a radically different perspective. This project will develop new tools that will aid in the development of Langlands' program.Langlands' automorphic functoriality conjecture implies both meromorphic continuation and functional equation of L-functions. The functoriality conjecture remains largely unexplored beyond the endoscopic framework. In the early 2000s, Langlands (on one side) and Braverman-Kazhdan (on the other), formulated different general strategies to attack the functoriality conjecture beyond endoscopy and the functional equation of L-functions. This project aims to combine different elements of those proposals in a formulation of a new, possibly more realistic, strategy. The focus will be on the understanding of certain conjectural Schwartz spaces proposed by Braverman-Kazhdan, spaces of orbital integrals studied by Langlands and others, and the Fourier and Hankel transforms on those spaces. It is expected that geometry of arc spaces, which are infinite dimensional, will play a major role in these studies.
在1860年的一本著名的回忆录中,Riemann研究了一个被称为Zeta函数的函数,该函数的性质意味着小于给定数字的素数的数目的近似公式。最优公式仍未得到证明,它取决于关于Zeta函数零点位置的黎曼假设。在他著名的假设提出之前,黎曼以函数方程的形式规定了Zeta函数的对称性。多亏了黎曼回忆录之后数论的发展,我们知道有一大类函数,其中包括Zeta函数;这些函数应该编码关于多项式方程系统的数字信息,例如它们的解的数目随着质数的变化而模为质数。这些函数应满足黎曼假设的一般形式以及函数方程。20世纪70年代初,朗兰兹提出了一个富有远见的计划,预测所有这些功能都可以从一个完全不同的角度来看待。这个项目将开发新的工具来帮助朗兰兹程序的开发。朗兰兹的自同构函数猜想蕴含着L函数的亚纯延拓和函数方程。除了内窥镜框架外,功能性猜想在很大程度上仍未得到探索。在21世纪初,朗兰兹(一边)和布雷弗曼-卡兹丹(另一边)制定了不同的一般策略来攻击超越内窥镜的功能猜想和L函数的函数方程。该项目旨在将这些建议的不同要素结合起来,制定一项新的、可能更现实的战略。重点将集中在对Braverman-Kazhdan提出的某些猜想Schwartz空间、Langland等人研究的轨道积分空间以及这些空间上的傅里叶变换和汉克尔变换的理解上。预计无限维弧空间的几何学将在这些研究中发挥重要作用。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Hitchin morphism for higher-dimensional varieties
- DOI:10.1215/00127094-2019-0085
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Tsao-Hsien Chen;N. Chau
- 通讯作者:Tsao-Hsien Chen;N. Chau
Hankel transform, Langlands functoriality and functional equation of automorphic L-functions
Hankel 变换、Langlands 函子性和自守 L 函数的函数方程
- DOI:10.1007/s11537-019-1650-8
- 发表时间:2020
- 期刊:
- 影响因子:1.5
- 作者:Ngô, Bảo Châu
- 通讯作者:Ngô, Bảo Châu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bao Chau Ngo其他文献
Bao Chau Ngo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bao Chau Ngo', 18)}}的其他基金
Invariant Theory, Moduli Space, and Automorphic Representations
不变理论、模空间和自同构表示
- 批准号:
2201314 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
视觉智能Shapelet Transform驱动的SHM数据关联分析与域自适应迁移机制深度学习
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
- 批准号:
2334954 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
ART: Translational Research Ambassadors Network for Strengthening Institutional Capacity and Fostering a Responsive and Open Mindset (TRANSFORM)
ART:加强机构能力和培养积极响应和开放心态的转化研究大使网络(TRANSFORM)
- 批准号:
2331208 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Cooperative Agreement
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
- 批准号:
2334955 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Maximizing the Impact of Engineering Laboratory Studies to Transform Undergraduate Engineering Curriculum and Advance Student Outcomes
最大限度地发挥工程实验室研究的影响,改变本科工程课程并提高学生的成绩
- 批准号:
2337194 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Designing multi-knowledge protocols to transform transboundary policies for hydroclimatic extremes(DEMO TAPE)
设计多知识协议以转变极端水文气候的跨境政策(DEMO TAPE)
- 批准号:
EP/Y036905/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
- 批准号:
2334952 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
MFB: Partnerships to Transform Emerging Industries - RNA Tools/Biotechnology: Stabilizing Hairpin Inserts in RNA Virus Induced Gene Silencing Vectors
MFB:合作变革新兴产业 - RNA 工具/生物技术:稳定 RNA 病毒诱导基因沉默载体中的发夹插入
- 批准号:
2330663 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
- 批准号:
2334951 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant














{{item.name}}会员




