RI: Medium: Collaborative Research: Experimental and Robotics Investigations of Multi-Scale Spatial Memory Consolidation in Complex Environments

RI:媒介:协作研究:复杂环境中多尺度空间记忆整合的实验和机器人研究

基本信息

  • 批准号:
    1703225
  • 负责人:
  • 金额:
    $ 49.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Navigation technologies are an increasingly important component of everyday life in an ever more dynamic and complex world. One limitation of these technologies is that they are optimized for a specific spatial scale. Another limitation is that they do not use the knowledge of previous navigation to compute new paths, essentially starting from scratch every time they are invoked. Recent evidence shows, however, that the mammalian brain has evolved to use multiple spatial navigation scales in parallel, and to use spatial memory to improve path planning. How these scales are used and what advantages such uses provide are still unknown. This project hypothesizes that multiscale spatial navigation is crucial in large and cluttered environments. Experiments recording from the neurons of the "brain GPS" system of the rodent (an excellent and efficient spatial navigator) seek to elucidate the basic principles of memory-based multiscale spatial navigation. These experiments will inform new algorithms that will be implemented on a computer to simulate complex multiscale spatial navigation, mimicking the neural computations of the brain. The simulations will then be tested and improved on actual autonomous mobile robots navigating in challenging complex environments.The project will use wireless high density neural recording technologies allowing for parallel recording of large populations of individual neurons. Optogenetic techniques will be used to manipulate the activity of these neurons and study their impact on the behavior and spatial memory of the animal. The multiscale pattern of neural activity will be used in the development of a mechanistic computational model, which will be tested in new and arbitrary simulated environments, and generate predictions as to how the neural system might succeed or fail. Finally, the simulations will be ported onto a mobile robot, where the algorithms can be tested and improved when the robot is faced with real sensor noise and unreliable world features.
在一个日益动态和复杂的世界中,导航技术是日常生活中日益重要的组成部分。这些技术的一个局限性是它们针对特定的空间尺度进行了优化。另一个限制是它们不使用以前导航的知识来计算新路径,每次调用它们时基本上都是从头开始。然而,最近的证据表明,哺乳动物的大脑已经进化到并行使用多个空间导航尺度,并使用空间记忆来改善路径规划。如何使用这些量表以及这些用途提供什么优势仍然未知。该项目假设多尺度空间导航在大而杂乱的环境中至关重要。实验记录的神经元的“大脑GPS”系统的啮齿动物(一个优秀的和有效的空间导航),试图阐明基于记忆的多尺度空间导航的基本原理。这些实验将提供新的算法,这些算法将在计算机上实现,以模拟复杂的多尺度空间导航,模仿大脑的神经计算。然后将在具有挑战性的复杂环境中导航的实际自主移动的机器人上对模拟进行测试和改进。该项目将使用无线高密度神经记录技术,允许并行记录大量单个神经元。光遗传学技术将用于操纵这些神经元的活动,并研究它们对动物行为和空间记忆的影响。神经活动的多尺度模式将用于开发一个机械计算模型,该模型将在新的和任意的模拟环境中进行测试,并生成关于神经系统如何成功或失败的预测。最后,模拟将被移植到一个移动的机器人,当机器人面临真实的传感器噪声和不可靠的世界功能时,可以测试和改进的算法。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integration of velocity-dependent spatio-temporal structure of place cell activation during navigation in a reservoir model of prefrontal cortex
前额皮质储层模型中导航过程中位置细胞激活的速度依赖性时空结构的整合
  • DOI:
    10.1007/s00422-022-00945-6
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Scleidorovich, Pablo;Weitzenfeld, Alfredo;Fellous, Jean-Marc;Dominey, Peter Ford
  • 通讯作者:
    Dominey, Peter Ford
A Computational Model for a Multi-Goal Spatial Navigation Task inspired by Rodent Studies
  • DOI:
    10.1109/ijcnn.2019.8851852
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martín Llofriu;Pablo Scleidorovich;G. Tejera;M. Contreras;Tatiana Pelc;J. Fellous;A. Weitzenfeld
  • 通讯作者:
    Martín Llofriu;Pablo Scleidorovich;G. Tejera;M. Contreras;Tatiana Pelc;J. Fellous;A. Weitzenfeld
A Computational Model for Latent Learning based on Hippocampal Replay
基于海马重放的潜在学习计算模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alfredo Weitzenfeld其他文献

NSL Lenguaje de Simulación de Redes Neuronales Un Sistema para el modelado biológico y artificial
NSL 生物和人工模型系统的神经元模拟语言
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alfredo Weitzenfeld
  • 通讯作者:
    Alfredo Weitzenfeld
Rat-inspired model of robot target learning and place recognition
机器人目标学习和地点识别的大鼠模型
Digital Fabrication of Bio-Inspired Robotic Modular Systems based on Biomechanics of Inching-Locomotion Caterpillars
基于微动毛毛虫生物力学的仿生机器人模块化系统的数字化制造
  • DOI:
    10.1109/c358072.2023.10436168
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    José Cornejo;Sergio Marquez Sanchez;J. Enrique Sierra;F. Gomez;R. Palomares;Alfredo Weitzenfeld
  • 通讯作者:
    Alfredo Weitzenfeld
Computational modeling of spatial cognition in rats and robotic experimentation: Goal-oriented navigation and place recognition in multiple directions
大鼠空间认知的计算模型和机器人实验:多方向目标导向导航和位置识别
The influence of multiple firing events on the formation and stability of activity patterns in continuous attractor networks
  • DOI:
    10.1186/1471-2202-14-s1-p241
  • 发表时间:
    2013-07-08
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    David Lyttle;Alfredo Weitzenfeld;Jean-Marc Fellous;Kevin K Lin
  • 通讯作者:
    Kevin K Lin

Alfredo Weitzenfeld的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alfredo Weitzenfeld', 18)}}的其他基金

CRCNS US-French Research Proposal: Collaborative Research: A replay-driven model of spatial sequence learning in the Hippocampus-PFC network using reservoir computing
CRCNS 美国-法国研究提案:合作研究:使用储层计算的海马-PFC 网络中重放驱动的空间序列学习模型
  • 批准号:
    1429937
  • 财政年份:
    2014
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
RI: SMALL: Collabrative Research: Investigations of the Role of Dorsal versus Ventral Place and Grid Cells during Multi-Scale Spatial Navigation in Rats and Robots
RI:小:协作研究:大鼠和机器人多尺度空间导航期间背侧与腹侧位置和网格细胞的作用的调查
  • 批准号:
    1117303
  • 财政年份:
    2011
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
  • 批准号:
    2313137
  • 财政年份:
    2023
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了