CIF:Medium:Collaborative Research:An Information-theoretic approach to nanopore sequencing
CIF:中:合作研究:纳米孔测序的信息理论方法
基本信息
- 批准号:1703403
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fast and inexpensive DNA sequencing technology is beginning to impact society through applications ranging from personalized medicine to understanding of ecological systems enabled by second generation sequencers. Wider applicability of second-generation sequencing technology is limited, however, by the short length of the DNA fragments that can be read. Nanopore sequencing has the potential to overcome several shortcomings of state-of-the art short-read sequencing.The goal of this project is to create new foundational theory and algorithms enabling several applications of nanopore sequencing. This research will support nanopore technology to become a leading next-generation sequencing approach. This project also contains a unique inter-university education and research program, which will include joint and collaborative student advising and curricular development.To realize the advantages of nanopore sequencing, methods for reducing and combating sequencing errors need to be developed. In a nanopore sequencer, DNA is transmigrated through a nanopore, and the ion current variations through the pore are measured to infer the DNA sequence. The mapping from the DNA sequence to the observed current trace, has several impairments (causing errors) including multiple nucleotides affecting each observation, random variations in nanopore response, dwelling time variations, synchronization errors, and noise. This project develops a holistic approach using tools from information theory and bio-informatics based on multiple interacting thrusts: (1) developing mathematical models and (2) information theory for nanopore sequencing, (3) decoding algorithms exploiting the structure of the nanopore channel, and (4) the theory and methodology for applications in DNA forensics, DNA phasing and DNA information storage. We couple this with an existing experimental nanopore sequencing research program, guiding models and the theory/algorithms with specific data as well as validating these ideas.
快速、廉价的DNA测序技术正开始影响社会,其应用范围从个性化医疗到由第二代测序仪实现的对生态系统的理解。然而,由于可读取的DNA片段长度较短,限制了第二代测序技术的广泛适用性。纳米孔测序有潜力克服当前最先进的短读测序的几个缺点。该项目的目标是创造新的基础理论和算法,使纳米孔测序的几种应用成为可能。这项研究将支持纳米孔技术成为领先的下一代测序方法。该项目还包含一个独特的大学间教育和研究项目,包括联合和合作的学生咨询和课程开发。为了实现纳米孔测序的优势,需要开发减少和对抗测序误差的方法。在纳米孔测序仪中,DNA通过纳米孔迁移,并测量通过孔的离子电流变化来推断DNA序列。从DNA序列到观察到的电流轨迹的映射有几个缺陷(导致错误),包括影响每个观察的多个核苷酸、纳米孔响应的随机变化、停留时间变化、同步误差和噪声。该项目利用信息论和生物信息学的工具开发了一种基于多个相互作用的整体方法:(1)开发数学模型;(2)纳米孔测序的信息论;(3)利用纳米孔通道结构的解码算法;(4)应用于DNA取证、DNA分相和DNA信息存储的理论和方法。我们将此与现有的实验纳米孔测序研究计划结合起来,指导模型和具有特定数据的理论/算法,并验证这些想法。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning in Gated Neural Networks
- DOI:
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Ashok Vardhan Makkuva;Sewoong Oh;Sreeram Kannan;P. Viswanath
- 通讯作者:Ashok Vardhan Makkuva;Sewoong Oh;Sreeram Kannan;P. Viswanath
C-MI-GAN : Estimation of Conditional Mutual Information using MinMax formulation
- DOI:
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:A. Mondal;A. Bhattacharya;Sudipto Mukherjee;Sreeram Kannan;Himanshu Asnani;A. Prathosh
- 通讯作者:A. Mondal;A. Bhattacharya;Sudipto Mukherjee;Sreeram Kannan;Himanshu Asnani;A. Prathosh
CCMI : Classifier based Conditional Mutual Information Estimation
- DOI:
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Sudipto Mukherjee;Himanshu Asnani;Sreeram Kannan
- 通讯作者:Sudipto Mukherjee;Himanshu Asnani;Sreeram Kannan
Breaking the gridlock in Mixture-of-Experts: Consistent and Efficient Algorithms
- DOI:
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Ashok Vardhan Makkuva;P. Viswanath;Sreeram Kannan;Sewoong Oh
- 通讯作者:Ashok Vardhan Makkuva;P. Viswanath;Sreeram Kannan;Sewoong Oh
Deepcode: Feedback Codes via Deep Learning
- DOI:10.1109/jsait.2020.2986752
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Hyeji Kim;Yihan Jiang;Sreeram Kannan;Sewoong Oh;P. Viswanath
- 通讯作者:Hyeji Kim;Yihan Jiang;Sreeram Kannan;Sewoong Oh;P. Viswanath
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sreeram Kannan其他文献
Travelers: A scalable fair ordering BFT system
Travelers:可扩展的公平排序 BFT 系统
- DOI:
10.48550/arxiv.2401.02030 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Bowen Xue;Sreeram Kannan - 通讯作者:
Sreeram Kannan
Fundamental Limits of Search.
搜索的基本限制。
- DOI:
10.1016/j.cels.2015.08.011 - 发表时间:
2015 - 期刊:
- 影响因子:9.3
- 作者:
Sreeram Kannan;David Tse - 通讯作者:
David Tse
SAKSHI: Decentralized AI Platforms
SAKSHI:去中心化人工智能平台
- DOI:
10.48550/arxiv.2307.16562 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Bhat;Canhui Chen;Zerui Cheng;Zhixuan Fang;Ashwin Hebbar;Sreeram Kannan;Ranvir Rana;Peiyao Sheng;Himanshu Tyagi;P. Viswanath;Xuechao Wang - 通讯作者:
Xuechao Wang
On Shannon capacity and causal estimation
关于香农容量和因果估计
- DOI:
10.1109/allerton.2015.7447115 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Rahul Kidambi;Sreeram Kannan - 通讯作者:
Sreeram Kannan
Network inference using directed information: The deterministic limit
使用定向信息的网络推理:确定性极限
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Arman Rahimzamani;Sreeram Kannan - 通讯作者:
Sreeram Kannan
Sreeram Kannan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sreeram Kannan', 18)}}的其他基金
CIF: Small: Deep Learning for Information Theory- Tackling Algorithm Deficit
CIF:小型:信息论深度学习 - 解决算法缺陷
- 批准号:
1908003 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
CAREER: Information-Theoretic Methods for RNA Analytics
职业:RNA 分析的信息理论方法
- 批准号:
1651236 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312229 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
- 批准号:
2312666 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312228 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
- 批准号:
2312547 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant