INFEWS N/P/H2O: SusChEM: Collaborative: Controlling Spatial Composition of Nonprecious Metal-based Heteronanostructures for Enhanced Electrocatalytic Performance

INFEWS N/P/H2O:SusChEM:协作:控制非贵金属基异质纳米结构的空间组成以增强电催化性能

基本信息

  • 批准号:
    1703827
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The project addresses catalytic electrochemical processes related to the production of ammonia (NH3) from water and nitrogen, and the oxygen evolution reaction (OER) needed to split water to produce hydrogen for energy storage and fuel and chemical production. Both processes offer alternatives to conventional processes that rely on hydrocarbon resources for the needed hydrogen. Thus the project will support NSF's initiatives in the areas of sustainable energy generation and Innovations at the Nexus of Food, Energy, and Water (INFEWS), the latter via the importance of NH3 as the world's primary raw material for nitrogen-based fertilizer production. In particular, the research is aimed at discovering efficient, nonprecious metal nanocatalysts for the targeted electrochemical processes that can operate at ambient temperature conditions rather than the high-temperature conditions required for hydrocarbon-based technologies. The electrocatalytic nitrogen reduction reaction (NRR) has the potential to generate NH3 at lower net energy consumption than the traditional Haber-Bosch thermal catalytic process which accounts for between 1 and 2% of world energy consumption. Specifically, the project seeks advances in catalytic electrolyzers for both NRR and OER. The work will focus exclusively on nonprecious metal bimetallic catalysts operating in alkaline electrochemical environments, thus enabling low-cost, technology-enabling alternatives to the precious metals. The project is built on preliminary data suggesting that specific control of the spatial composition and morphology of heterostructured nanoparticles will enable enhanced catalytic activity and also establish fundamental understanding of composition-activity relationships for key bimetallic systems in nanoparticle form. The specific research objectives are: (1) to synthesize and characterize novel heteronanostructures of nonprecious Fe-Ni bimetals composed of a hetero-core with/without an alloyed shell, (2) to evaluate the reactivity and selectivity of the catalysts for electrochemical NRR and OER in alkaline systems, and (3) to develop in operando methods to correlate the structure and composition with electrocatalytic activity using x-ray absorption spectroscopy. Beyond the targeted reactions, introduction of low-cost, nonprecious nanoparticle catalysts are of increasing interest for a broad range of catalytic applications, including electrocatalysis. Validation of the proposed novel nonprecious nanostructures, where specific spatial composition is correlated with the performance metrics and in operando characterization, will enable an approach to catalyst design that could be widely applied to enable cost- and performance-competitive catalysts for commercialization. Furthermore, controlling catalyst selectivity through structural design would enable key advances for important reactions related to water treatment, energy conversion, and agriculture. To support this objective, an integrated approach of research and education will be established to increase student participation in STEM research, to pursue STEM majors, and to train next-generation leaders in the interdisciplinary field of nanocatalysts. The investigators will actively recruit students, especially unrepresented student groups, to their research programs. The research findings will be integrated into teaching for undergraduate and graduate curriculum development in both Chemistry and Chemical Engineering departments. In addition, the investigators will strengthen the current summer programs by involving K-12 teachers through American Chemical Society Science Coaches and the University of Arkansas Engineering Academy Programs, as well as organizing an annual workshop for students and K-12 teachers on Nanocatalyst Discovery.
该项目涉及与从水和氮气生产氨(NH3)有关的催化电化学过程,以及分解水以产生用于能量储存和燃料及化学品生产的氢气所需的析氧反应(OER)。 这两种工艺都为依赖碳氢化合物资源获得所需氢气的传统工艺提供了替代方案。 因此,该项目将支持NSF在可持续能源生产和食品,能源和水(INFEWS)创新领域的举措,后者通过NH3作为世界氮基肥料生产的主要原材料的重要性。特别是,该研究旨在为目标电化学过程发现有效的非贵金属纳米催化剂,这些过程可以在环境温度条件下运行,而不是基于烃的技术所需的高温条件。 电催化氮还原反应(NRR)具有以比传统的哈伯-博世热催化工艺更低的净能耗产生NH3的潜力,该热催化工艺占世界能耗的1%至2%。 具体而言,该项目寻求NRR和OER催化电解槽的进步。 这项工作将专注于在碱性电化学环境中运行的非贵金属催化剂,从而实现贵金属的低成本,技术支持替代品。该项目建立在初步数据的基础上,这些数据表明,对异质结构纳米颗粒的空间组成和形态的具体控制将能够增强催化活性,并建立对纳米颗粒形式的关键催化剂系统的组成-活性关系的基本理解。具体的研究目标是:(1)合成和表征由具有/不具有合金壳的异质核组成的非贵Fe-Ni双金属的新型异质纳米结构,(2)评价催化剂在碱性体系中用于电化学NRR和OER的反应性和选择性,和(3)开发使用X射线吸收光谱将结构和组成与电催化活性相关联的操作方法。除了目标反应,引入低成本,非贵重的纳米粒子催化剂的广泛的催化应用,包括电催化越来越感兴趣。 验证所提出的新型非贵金属纳米结构,其中特定的空间组成与性能指标和操作表征相关,将使催化剂设计的方法,可以广泛应用于使成本和性能竞争力的催化剂商业化。此外,通过结构设计控制催化剂的选择性将使水处理、能源转换和农业等重要反应取得关键进展。 为了支持这一目标,将建立一个研究和教育的综合方法,以增加学生参与STEM研究,追求STEM专业,并培养下一代领导人在纳米催化剂的跨学科领域。研究人员将积极招募学生,特别是无代表的学生团体,他们的研究计划。研究结果将被整合到教学的本科和研究生课程开发在化学和化学工程部门。此外,调查人员将通过美国化学学会科学教练和阿肯色州工程学院计划的大学,以及为学生和K-12教师组织一个关于纳米催化剂发现的年度研讨会,来加强目前的暑期课程。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CuPt and CuPtRu Nanostructures for Ammonia Oxidation Reaction
  • DOI:
    10.1149/08512.0177ecst
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Manso;Lianghao Song;Zhixiu Liang;Jia X. Wang;Jingyi Chen
  • 通讯作者:
    R. Manso;Lianghao Song;Zhixiu Liang;Jia X. Wang;Jingyi Chen
Compositional Optimization of Alloy Fe x Ni y (OH) 2 Nanoparticles for Alkaline Electrochemical Oxygen Evolution
碱性电化学析氧合金Fe x Ni y (OH) 2 纳米粒子的成分优化
  • DOI:
    10.1149/07709.0025ecst
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Greenlee, Lauren F;Acharya, Prashant;Nelson, Zachary
  • 通讯作者:
    Nelson, Zachary
Temperature-Dependent Kinetics and Reaction Mechanism of Ammonia Oxidation on Pt, Ir, and PtIr Alloy Catalysts
  • DOI:
    10.1149/2.0181815jes
  • 发表时间:
    2018-09-20
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Song, Liang;Liang, Zhixiu;Wang, Jia X.
  • 通讯作者:
    Wang, Jia X.
Direct 12-Electron Oxidation of Ethanol on a Ternary Au(core)-PtIr(Shell) Electrocatalyst
Role of Surface Area on the Performance of Iron Nickel Nanoparticles for the Oxygen Evolution Reaction (OER)
表面积对铁镍纳米粒子析氧反应 (OER) 性能的影响
  • DOI:
    10.1149/08511.0081ecst
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Acharya, Prashant;Burrow, James;Abolhassani, Mojtaba;Greenlee, Lauren F
  • 通讯作者:
    Greenlee, Lauren F
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jingyi Chen其他文献

Reducing formation damage by artificially controlling the fluid-rock chemical interaction in a double-well geothermal heat production system
通过人为控制双井地热产热系统中的流体-岩石化学相互作用来减少地层损害
  • DOI:
    10.1016/j.renene.2019.12.038
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Jingyi Chen;Tianfu Xu;Zhenjiao Jiang;Bo Feng;Xu Liang
  • 通讯作者:
    Xu Liang
Accurate Insar Surface Deformation Mapping over the Oil-Producing Permian Basin with Automated Tropospheric Outlier Removal
通过自动对流层异常值去除对产油二叠纪盆地进行精确的 Insar 表面变形测绘
Height Dependency of Aerosol- Cloud Interaction Regimes
气溶胶-云相互作用状态的高度依赖性
Pre-stack separation of PP and split PS waves in HTI media
HTI 介质中 PP 和分裂 PS 波的叠前分离
  • DOI:
    10.1093/gji/ggx187
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Jun Lu;Yun Wang;Yuyong Yang;Jingyi Chen
  • 通讯作者:
    Jingyi Chen
Suppressing coherence effects in quantum-measurement-based engines
抑制基于量子测量的引擎中的相干效应
  • DOI:
    10.1103/physreva.104.062210
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zhiyuan Lin;S. Su;Jingyi Chen;Jincan Chen;Jonas F. G. Santos
  • 通讯作者:
    Jonas F. G. Santos

Jingyi Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jingyi Chen', 18)}}的其他基金

REU Site: Sustainable Chemistry for Integrative Synthesis and Measurements (SCISM)
REU 网站:综合合成和测量的可持续化学 (SCISM)
  • 批准号:
    2349177
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAS: Template Directed Synthesis of Earth Abundant Metal Oxide and Chalcogenide Nanoshells
CAS:地球丰富的金属氧化物和硫属化物纳米壳的模板定向合成
  • 批准号:
    2304999
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
I-Corps: A multifunctional metal-based nanoparticle solution for surface disinfection and decontamination
I-Corps:用于表面消毒和去污的多功能金属基纳米颗粒解决方案
  • 批准号:
    2131791
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9508841
  • 财政年份:
    1995
  • 资助金额:
    $ 45万
  • 项目类别:
    Fellowship Award

相似国自然基金

等离子体催化H2O氧化CH4制CH3OH的反应机理及其标度关系
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
H2O强化小孔分子筛限域Cu催化剂选择性氧化甲烷制甲醇研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
“瓶中双船” 可控H2O解离维持臭氧持续催化氧化VOCs性能与机理 研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于湿气源碳捕集CO2/H2O共吸附机制及多孔碳构效关系研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于限域H2O的催化体系构筑及其在小分子污染物降解过程中的作用机制
  • 批准号:
    22376205
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于光活性MOF材料的设计合成用于催化CO2还原和H2O氧化耦合的性能研究
  • 批准号:
    22302105
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
定向H2O活化调控含碳中间体增强氮化碳光催化CO2制甲醇选择性机制研究
  • 批准号:
    22309157
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
H2O/CO/C2H2复杂反应网络中加氢与羰基化的定向催化调控
  • 批准号:
    22372019
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
H2O强化限域Pd催化剂低温协同净化NOx和CO的机制研究
  • 批准号:
    22376068
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
洋脊地幔高H2O/Ce组分的分布和来源:来自机器学习的启示
  • 批准号:
    42373044
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Modulating H2O Activity Promotes CO2 Reduction to Multi-Carbon Products
调节 H2O 活性可促进多碳产品的 CO2 还原
  • 批准号:
    2326720
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
断面モデルセルを用いた高安定H2O-CO2共電解電極の最適設計
利用截面模型电池优化设计高稳定性H2O-CO2共电解电极
  • 批准号:
    24KJ0368
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSF Convergence Accelerator Track K: Towards Resilient, Equitable, Safe and Sustainable Water for Islands (RESSI-H2O)
NSF 融合加速器轨道 K:为岛屿提供有弹性、公平、安全和可持续的水 (RESSI-H2O)
  • 批准号:
    2344418
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
異種材料接合の表面処理における固体ソースH2Oプラズマ分布均一化のための改良
异种材料键合表面处理中均匀固体源H2O等离子体分布的改进
  • 批准号:
    24H02547
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Encouragement of Scientists
Nano-Engineered Co-Ionic Ceramic Reactors for CO2/H2O Electroconversion to Light Olefins
用于 CO2/H2O 电转化为轻质烯烃的纳米工程共离子陶瓷反应器
  • 批准号:
    10079292
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    EU-Funded
Highly Efficient Reactor for Conversion of CO2 and H2O to Carbon Neutral Fuels and Chemicals
用于将 CO2 和 H2O 转化为碳中性燃料和化学品的高效反应器
  • 批准号:
    10102725
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    EU-Funded
Postdoctoral Fellowship: AAPF: Improved Astrochemical Data for Diffuse Cloud Models: Theoretical Dissociative Recombination Rate Coefficients for OH+, H2O+, and H2Cl+
博士后奖学金:AAPF:改进弥散云模型的天体化学数据:OH、H2O 和 H2Cl 的理论解离重组率系数
  • 批准号:
    2303895
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Fellowship Award
Electrocatalytic reduction of NOx to NH3 using H2O as a proton source
使用 H2O 作为质子源将 NOx 电催化还原为 NH3
  • 批准号:
    22K14541
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on effective separation of HTO from H2O which fused with adsorption and rectification by membrane distillation
膜蒸馏吸附精馏有效分离HTO与H2O的研究
  • 批准号:
    22K19870
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Atmospheric Particle Formation in Two Systems: Sulfuric Acid (H2SO4)/Water (H2O) plus Ammonia (NH3) and/or Amines, and Oxidation Products from Organic Compounds
两个系统中大气颗粒的形成:硫酸 (H2SO4)/水 (H2O) 加氨 (NH3) 和/或胺,以及有机化合物的氧化产物
  • 批准号:
    2232189
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了