III: Medium: Bias Tracking and Reduction Methods for High-Dimensional Exploratory Visual Analysis and Selection

III:中:高维探索性视觉分析和选择的偏差跟踪和减少方法

基本信息

  • 批准号:
    1704018
  • 负责人:
  • 金额:
    $ 108.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

Exploratory visualization and analysis of large and complex datasets is growing increasingly common across a range of domains. For example, online companies track users to learn about their products, computer security logs capture detailed traces of network activity, and health care systems capture detailed longitudinal records for their patients. In all of these fields, large and complex data repositories are being created with the goal supporting data-driven, evidence-based decision making. However, today's visualization tools -- a critical part of an analyst's toolbox -- are often overwhelmed when applied to high-dimensional datasets (i.e., datasets with large numbers of variables). Real-world datasets can often have many thousands of variables; a stark contrast to the much smaller number of dimensions supported by most visualizations. This gap in dimensionality puts the validity of any analysis at great risk of bias, potentially leading to serious, hidden errors. This research project will develop a new approach to high-dimensional exploratory visualization that will help detect and reduce selection bias and other problems with data interpretation during exploratory high-dimensional data visualization. The project's results, including open-source software, will be broadly applicable across domains. In addition, the project will be evaluated with users in a health outcomes research setting. This offers significant potential to improve health care around the world. This project develops a set of Contextual Visualization Methods for exploratory data analysis which are designed to support the discovery of more robust and generalizable insights from high-dimensional data. These methods are built upon a recognition that the very summarization that makes many visual methods effective also inherently obscures aspects of a high-dimensional dataset that may be critical to accurate interpretation of a user's visual findings. More specifically, the subset of data (comprising both dimensions and records) that is actively accounted for within a visualization -- the data focus -- must be interpreted within the context of the many dimensions and data records that have been omitted or are not clearly represented within a visualization--the data context. The methods that this project develops, therefore, are designed to (1) explicitly model and analyze the data context, and (2) convey the relationship between the data focus and the context in order to better inform users about hidden problems such as confounding variables and selection bias. The primary technical contributions of the project include: (1) inline replication for visual validation; (2) baselined selection methods for high-dimensional visualization; (3) interactive rebalancing for representative visualization. In addition, open-source software will be developed and evaluated with real-world data and practitioners. The products of this research project -- including new methods, software products, and evaluation results -- will be disseminated through a project website (https://vaclab.web.unc.edu/contextual-visualization/).
大型复杂数据集的探索性可视化和分析在一系列领域中越来越普遍。例如,在线公司跟踪用户以了解他们的产品,计算机安全日志捕获网络活动的详细痕迹,医疗保健系统捕获患者的详细纵向记录。在所有这些领域,正在创建大型和复杂的数据存储库,其目标是支持数据驱动的基于证据的决策。然而,今天的可视化工具-分析师工具箱的关键部分-在应用于高维数据集时往往不堪重负(即,具有大量变量的数据集)。真实世界的数据集通常有数千个变量;这与大多数可视化支持的维度数量少得多形成鲜明对比。这种维度上的差距使任何分析的有效性都面临极大的偏倚风险,可能导致严重的隐藏错误。该研究项目将开发一种新的高维探索性可视化方法,有助于检测和减少探索性高维数据可视化过程中的选择偏差和其他数据解释问题。该项目的成果,包括开放源码软件,将广泛适用于各个领域。此外,将在健康成果研究环境中与用户一起对该项目进行评估。这为改善世界各地的医疗保健提供了巨大的潜力。该项目开发了一套用于探索性数据分析的上下文可视化方法,旨在支持从高维数据中发现更强大和更普遍的见解。这些方法是建立在这样一种认识的基础上的,即使得许多视觉方法有效的非常概括也固有地模糊了高维数据集的方面,这对于准确解释用户的视觉发现可能是至关重要的。更具体地说,在可视化中积极考虑的数据子集(包括维度和记录)-数据焦点-必须在可视化中省略或未明确表示的许多维度和数据记录的上下文中进行解释-数据上下文。因此,该项目开发的方法旨在(1)明确建模和分析数据上下文,(2)传达数据焦点和上下文之间的关系,以便更好地告知用户隐藏的问题,如混淆变量和选择偏差。该项目的主要技术贡献包括:(1)用于视觉验证的内联复制;(2)用于高维可视化的基线选择方法;(3)用于代表性可视化的交互式重新平衡。此外,还将开发开放源码软件,并利用真实世界的数据和从业人员进行评估。这一研究项目的产品-包括新方法、软件产品和评价结果-将通过一个项目网站(https://vaclab.web.unc.edu/contextual-visualization/)传播。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selection Bias Tracking and Detailed Subset Comparison for High-Dimensional Data
  • DOI:
    10.1109/tvcg.2019.2934209
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    D. Borland;Wenyuan Wang;Jonathan Zhang;Joshua Shrestha;D. Gotz
  • 通讯作者:
    D. Borland;Wenyuan Wang;Jonathan Zhang;Joshua Shrestha;D. Gotz
Enabling Longitudinal Exploratory Analysis of Clinical COVID Data
实现临床 COVID 数据的纵向探索性分析
  • DOI:
    10.1109/vahc53616.2021.00008
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Borland, David;Brain, Irena;Fecho, Karamarie;Pfaff, Emily;Xu, Hao;Champion, James;Bizon, Chris;Gotz, David
  • 通讯作者:
    Gotz, David
Adaptive Contextualization Methods for Combating Selection Bias during High-Dimensional Visualization
在高维可视化过程中对抗选择偏差的自适应情境化方法
Visual Analysis of High-Dimensional Event Sequence Data via Dynamic Hierarchical Aggregation
  • DOI:
    10.1109/tvcg.2019.2934661
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    D. Gotz;Jonathan Zhang;Wenyuan Wang;Joshua Shrestha;D. Borland
  • 通讯作者:
    D. Gotz;Jonathan Zhang;Wenyuan Wang;Joshua Shrestha;D. Borland
Contextual Visualization
  • DOI:
    10.1109/mcg.2018.2874782
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    D. Borland;Wenyuan Wang;D. Gotz
  • 通讯作者:
    D. Borland;Wenyuan Wang;D. Gotz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Gotz其他文献

Scalable and adaptive streaming for non-linear media
非线性媒体的可扩展和自适应流媒体
RCLens: Interactive Rare Category Exploration and Identification
RCLens:交互式稀有类别探索和识别
Institute for Research on Poverty Discussion Paper no. 1040-94 Taxes and the Poor: A Microsimulation Study of Implicit and Explicit Taxes
贫困研究所讨论论文编号。
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Manish Kumar;David Gotz;T. Nutley;Jason Smith
  • 通讯作者:
    Jason Smith
A Survey on Visual Analytics of Social Media Data
社交媒体数据可视化分析调查
  • DOI:
    10.1109/tmm.2016.2614220
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Yingcai Wu;Nan Cao;David Gotz;Yap-Peng Tan;Daniel A. Keim
  • 通讯作者:
    Daniel A. Keim
Z-Glyph: Visualizing outliers in multivariate data
Z-Glyph:可视化多元数据中的异常值
  • DOI:
    10.1177/1473871616686635
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Nan Cao;Yu-Ru Lin;David Gotz;Fan Du
  • 通讯作者:
    Fan Du

David Gotz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Gotz', 18)}}的其他基金

III: Medium: Counterfactual-Based Supports For Visual Causal Inference
III:媒介:基于反事实的视觉因果推理支持
  • 批准号:
    2211845
  • 财政年份:
    2022
  • 资助金额:
    $ 108.16万
  • 项目类别:
    Standard Grant
NSF Student Travel Support for the 2019 IEEE Visualization Doctoral Colloquium (IEEE VIS DC)
NSF 学生为 2019 年 IEEE 可视化博士座谈会 (IEEE VIS DC) 提供的旅行支持
  • 批准号:
    1925878
  • 财政年份:
    2019
  • 资助金额:
    $ 108.16万
  • 项目类别:
    Standard Grant
QuBBD: Collaborative Research: Interactive Ensemble clustering for mixed data with application to mood disorders
QuBBD:协作研究:混合数据的交互式集成聚类及其在情绪障碍中的应用
  • 批准号:
    1557593
  • 财政年份:
    2015
  • 资助金额:
    $ 108.16万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 108.16万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
  • 批准号:
    2327438
  • 财政年份:
    2024
  • 资助金额:
    $ 108.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 108.16万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 108.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 108.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 108.16万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 108.16万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 108.16万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 108.16万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 108.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了