RI: Medium: Collaborative Research: Closed Loop Perceptual Planning for Dynamic Locomotion
RI:中:协作研究:动态运动的闭环感知规划
基本信息
- 批准号:1704256
- 负责人:
- 金额:$ 77.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern robots can be seen moving about a variety of terrains and environments, using wheels, legs, and other means, engaging in life-like hopping, jumping, walking, crawling, and running. They execute motions called gaits. An example of a gait is a horse trotting or galloping. Likewise, humans execute walking, running and skipping gaits. Essentially, for either a biological or mechanical systems, a gait is a locomotion pattern that involves large-amplitude body oscillations. Naturally, these motions cause impacts with terrain that jostle on-board perceptual systems and directly influence what the robots actually "see" as they move. For instance, the body motion of a bounding horse-like robot may result in significant occlusions and oscillations in on-board camera systems that confound motion estimation and perceptual feedback.Focusing on complex mobility robots, this project seeks to better understand the coupling between locomotion and visual perception to improve perceptual feedback for closed-loop motion estimation. The work is organized around two key questions: 1) How should a robot look to move well? 2) How should a robot move to see well? To address the first challenge, the periodic structure of gait-based motions will be leveraged to improve perceptual filtering as the robot carries out fixed (pre-determined) motions. The second half of the project will derive perceptual objectives and a new perceptual gait design framework to guide how high degree-of-freedom, complex mobility robots should move (locomote). The goal is to optimize feedback for closed-loop motion implementation, on-line adaptation, and learning, which are currently difficult or impossible for many complex mobility robots.
可以看到现代机器人在各种地形和环境中移动,使用轮子,腿和其他手段,从事像生活一样的跳跃,跳跃,行走,爬行和跑步。它们执行的运动称为步态。步态的一个例子是马小跑或疾驰。同样,人类执行步行,跑步和跳跃步态。基本上,对于生物或机械系统,步态是涉及大幅度身体振荡的运动模式。自然地,这些运动会对地形产生影响,从而挤压机载感知系统,并直接影响机器人在移动时实际“看到”的东西。 例如,一个跳跃的马一样的机器人的身体运动可能会导致显着的遮挡和振荡的车载摄像机系统,混淆运动估计和感知反馈。本项目着眼于复杂的移动机器人,旨在更好地了解运动和视觉感知之间的耦合,以改善闭环运动估计的感知反馈。这项工作是围绕两个关键问题组织的:1)机器人应该如何看起来移动良好?2)机器人应该如何移动才能看得清楚?为了解决第一个挑战,将利用基于步态的运动的周期性结构来改善机器人执行固定(预定)运动时的感知过滤。 该项目的后半部分将推导出感知目标和一个新的感知步态设计框架,以指导高自由度,复杂的移动机器人应该如何移动。 我们的目标是优化反馈的闭环运动的实施,在线适应和学习,这是目前困难或不可能的许多复杂的移动机器人。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Central Pattern Generator With Inertial Feedback for Stable Locomotion and Climbing in Unstructured Terrain
- DOI:10.1109/icra.2018.8461013
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:Guillaume Sartoretti;Samuel Shaw;Katie Lam;Naixin Fan;M. Travers;H. Choset
- 通讯作者:Guillaume Sartoretti;Samuel Shaw;Katie Lam;Naixin Fan;M. Travers;H. Choset
Enabling Dynamic Behaviors With Aerodynamic Drag in Lightweight Tails
- DOI:10.1109/tro.2020.3045644
- 发表时间:2021-08-01
- 期刊:
- 影响因子:7.8
- 作者:Norby, Joseph;Li, Jun Yang;Johnson, Aaron M.
- 通讯作者:Johnson, Aaron M.
Periodic SLAM: Using Cyclic Constraints to Improve the Performance of Visual-Inertial SLAM on Legged Robots
周期性 SLAM:使用循环约束提高腿式机器人视觉惯性 SLAM 的性能
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kumar, Hans;Payne, J. Joe;Travers, Matthew;Johnson, Aaron M.;Choset, Howie
- 通讯作者:Choset, Howie
The Salted Kalman Filter: Kalman filtering on hybrid dynamical systems
- DOI:10.1016/j.automatica.2021.109752
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Nathan J. Kong;J. Payne;George Council;Aaron M. Johnson
- 通讯作者:Nathan J. Kong;J. Payne;George Council;Aaron M. Johnson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Howard Choset其他文献
Howard Choset的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Howard Choset', 18)}}的其他基金
Collaborative Research: Mechanical Communication for Multi-agent Systems
协作研究:多智能体系统的机械通信
- 批准号:
2140036 - 财政年份:2022
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
Collaborative Research: A Comprehensive Dynamic Search Framework for Asynchronous Multi-Objective Multi-Agent Planning
协作研究:异步多目标多智能体规划的综合动态搜索框架
- 批准号:
2120529 - 财政年份:2021
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Data Collection for Robot-Oriented Disaster Site Modeling at Champlain Towers South Collapse
快速/协作研究:尚普兰塔南倒塌的面向机器人的灾难现场建模数据收集
- 批准号:
2140528 - 财政年份:2021
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
An Expanded Analysis and Design Framework for Robots that Move by Reshaping their Limbs and Bodies
通过重塑四肢和身体来移动的机器人的扩展分析和设计框架
- 批准号:
1727889 - 财政年份:2017
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
NRI: INT: MANUFACTURING USA: COLLAB: In-Situ Collaborative Robotics in Confined Spaces
NRI:INT:美国制造业:COLLAB:密闭空间中的原位协作机器人
- 批准号:
1734360 - 财政年份:2017
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
Collaborative Research: From Biology to Mechanism:
合作研究:从生物学到机制:
- 批准号:
1517351 - 财政年份:2015
- 资助金额:
$ 77.95万 - 项目类别:
Continuing Grant
Collaborative Research: Geometric Mechanics for Locomoting Systems
合作研究:运动系统的几何力学
- 批准号:
1363057 - 财政年份:2014
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Exploiting Granular Mechanics to Enable Robotic Locomotion
NRI:合作研究:利用颗粒力学实现机器人运动
- 批准号:
1426655 - 财政年份:2014
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
NRI: Large: Collaborative Research: Complementary Situational Awareness for Human-Robot Partnerships
NRI:大型:协作研究:人机伙伴关系的互补态势感知
- 批准号:
1327597 - 财政年份:2013
- 资助金额:
$ 77.95万 - 项目类别:
Continuing Grant
International Planning Visit: Robotic Exploration of the Mersa/Wadi Gawasis, Hurghada, Egypt
国际规划访问:埃及赫尔格达 Mersa/Wadi Gawasis 的机器人探索
- 批准号:
1066733 - 财政年份:2011
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 77.95万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 77.95万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 77.95万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 77.95万 - 项目类别:
Continuing Grant