RI: Medium: Collaborative Research: Understanding and Editing Visual Sentiment

RI:媒介:协作研究:理解和编辑视觉情感

基本信息

项目摘要

The project develops computer vision and pattern recognition technologies for visual sentiment understanding and visual sentiment editing. The interdisciplinary research team investigates the problem of understanding how images and video convey emotion. The project develops methods to infer, edit, and synthesize visual sentimental content in image/videos, in addition to their semantic contents. The project applies developed technologies to reduce violence from multimedia materials for children, and negative psychological impacts from social media for posttraumatic stress disorder (PTSD) patients. The project integrates research and education by creating new interdisciplinary courses and training graduate students. The project builds connection with the veteran academic resource center on the campus to help PTSD patients to recover from mental health problems. The research team also shares collected data with research communities.This research develops visual sentiment understanding algorithms through joint extraction of sentiments and semantics, in order to advance the understanding of how semantic entities substantiate and carry sentiments at a fine-grained object or pixel level. Computer vision algorithms and psychometric assessment techniques are combined to automatically analyze visual and recognize sentiments and emotions from multimedia materials and social media contents posted and shared by veterans. The research also explores methods of visual sentiment editing to reduce violence from multimedia materials and social media contents. The research can help (1) to protect children from accessing violent multimedia materials, and (2) to provide appropriate social media contents for applications of automatically detecting violent contents from veteran-shared multimedia.
该项目开发用于视觉情感理解和视觉情感编辑的计算机视觉和模式识别技术。跨学科研究团队调查了理解图像和视频如何传达情感的问题。该项目开发的方法来推断,编辑和合成图像/视频中的视觉情感内容,除了他们的语义内容。该项目应用已开发的技术,以减少儿童多媒体材料中的暴力,以及社交媒体对创伤后应激障碍患者的负面心理影响。该项目通过创建新的跨学科课程和培训研究生来整合研究和教育。 该项目与校园内的资深学术资源中心建立联系,帮助创伤后应激障碍患者从心理健康问题中恢复过来。本研究通过情感和语义的联合提取,开发视觉情感理解算法,以促进对语义实体如何在细粒度对象或像素级别上充实和携带情感的理解。计算机视觉算法和心理测量评估技术相结合,自动分析视觉和识别情绪和情感的多媒体材料和社交媒体内容发布和共享的退伍军人。该研究还探讨了视觉情感编辑的方法,以减少多媒体材料和社交媒体内容中的暴力。该研究可以帮助(1)保护儿童免受暴力多媒体材料的访问,以及(2)为自动检测退伍军人共享多媒体中的暴力内容的应用程序提供适当的社交媒体内容。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning to Adaptively Scale Recurrent Neural Networks
  • DOI:
    10.1609/aaai.v33i01.33013822
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Hu;Liqiang Wang;Guo-Jun Qi
  • 通讯作者:
    Hao Hu;Liqiang Wang;Guo-Jun Qi
Generalized Loss-Sensitive Adversarial Learning with Manifold Margins
  • DOI:
    10.1007/978-3-030-01228-1_6
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Marzieh Edraki;Guo-Jun Qi
  • 通讯作者:
    Marzieh Edraki;Guo-Jun Qi
WCP: Worst-Case Perturbations for Semi-Supervised Deep Learning
Meta domain generalization for smart manufacturing: Tool wear prediction with small data
  • DOI:
    10.1016/j.jmsy.2021.12.009
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    12.1
  • 作者:
    Dongdong Wang;Qingyang Liu;Dazhong Wu;Liqiang Wang
  • 通讯作者:
    Dongdong Wang;Qingyang Liu;Dazhong Wu;Liqiang Wang
Minimally Distorted Structured Adversarial Attacks
  • DOI:
    10.1007/s11263-022-01701-w
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    19.5
  • 作者:
    Ehsan Kazemi;Thomas Kerdreux;Liqiang Wang
  • 通讯作者:
    Ehsan Kazemi;Thomas Kerdreux;Liqiang Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liqiang Wang其他文献

Tensile propeties of in situ synthesized (TiB+LaO)/Ti composite
原位合成(TiB LaO)/Ti复合材料的拉伸性能
Protein hydrogel networks: A unique approach to heteroatom self-doped hierarchically porous carbon structures as an efficient ORR electrocatalyst in both basic and acidic conditions
蛋白质水凝胶网络:杂原子自掺杂分级多孔碳结构的独特方法作为碱性和酸性条件下的高效 ORR 电催化剂
  • DOI:
    10.1016/j.apcatb.2019.01.050
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liqiang Wang;Kaixin Liang;Liu Deng;You-Nian Liu
  • 通讯作者:
    You-Nian Liu
FF-LINS: A Consistent Frame-to-Frame Solid-State-LiDAR-Inertial State Estimator
FF-LINS:一致的帧到帧固态激光雷达惯性状态估计器
  • DOI:
    10.1109/lra.2023.3329625
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Hailiang Tang;Tisheng Zhang;X. Niu;Liqiang Wang;Linfu Wei;Jingnan Liu
  • 通讯作者:
    Jingnan Liu
Constraining the genesis of tungsten mineralization in the Jiaoxi deposit, Tibet: A fluid inclusion and H, O, S and Pb isotope investigation
西藏礁溪矿床钨成因的制约:流体包裹体及H、O、S、Pb同位素研究
  • DOI:
    10.1016/j.oregeorev.2021.104448
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Yong Wang;Juxing Tang;Liqiang Wang;Jan Marten Huizenga;M. Santosh
  • 通讯作者:
    M. Santosh
A modulated sparse random matrix for high-resolution and high-speed 3D compressive imaging through a multimode fiber
通过多模光纤实现高分辨率和高速 3D 压缩成像的调制稀疏随机矩阵
  • DOI:
    10.1016/j.scib.2022.03.017
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Zhenyu Dong;Zhong Wen;Chenlei Pang;Liqiang Wang;Lan Wu;Xu Liu;Qing Yang
  • 通讯作者:
    Qing Yang

Liqiang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liqiang Wang', 18)}}的其他基金

ICE-T:RI: Towards End-to-End Resource Optimization for Time-Critical Computing Using Reinforcement Learning and Program Analysis
ICE-T:RI:使用强化学习和程序分析实现时间关键型计算的端到端资源优化
  • 批准号:
    1836881
  • 财政年份:
    2018
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Standard Grant
CAREER: Towards Scalable Error Detection for Parallel Software Systems on Emerging Computing Platforms
职业:在新兴计算平台上实现并行软件系统的可扩展错误检测
  • 批准号:
    1622292
  • 财政年份:
    2015
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Standard Grant
CSR:Small: Towards Reliable Concurrent Computing Using Hybrid Program Analysis
CSR:小:使用混合程序分析实现可靠的并发计算
  • 批准号:
    1118059
  • 财政年份:
    2011
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Standard Grant
CAREER: Towards Scalable Error Detection for Parallel Software Systems on Emerging Computing Platforms
职业:在新兴计算平台上实现并行软件系统的可扩展错误检测
  • 批准号:
    1054834
  • 财政年份:
    2011
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Standard Grant
Enabling Large-Scale, High-Resolution, and Real-Time Earthquake Simulations on Petascale Parallel Computers
在千万亿级并行计算机上实现大规模、高分辨率和实时地震模拟
  • 批准号:
    0941735
  • 财政年份:
    2009
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
  • 批准号:
    2313137
  • 财政年份:
    2023
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 48.57万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了