CIF: Medium: Collaborative Research: Low-Resolution Sampling with Generalized Thresholds

CIF:中:协作研究:具有广义阈值的低分辨率采样

基本信息

  • 批准号:
    1704401
  • 负责人:
  • 金额:
    $ 39.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

CIF: Medium: Collaborative Research:Low-Resolution Sampling with Generalized ThresholdsJian Li, Lee Swindlehurst, and Mojtaba Soltanalian AbstractQuantization of signals of interest is a necessary first step in digital signal processing applications. When signals across a wide frequency band are of interest, a fundamental tradeoff between sampling rate, amplitude quantization precision, cost, and power consumption is encountered. The investigators study low resolution sampling techniques with general thresholds, which are affordable, technically feasible, easy to apply, energy-efficient, and consistent with technological trends. The enormous gains in capacity and spectral efficiency, for example, that could be provided by a successful millimeter wave (mm-wave) massive multiple-input multiple output implementation could have a revolutionary effect on the performance of wireless systems nearly everywhere we use them: at home, at work, at school, commuting via public transportation or by plane, shopping, at restaurants, recreational venues, sporting events, and so on. Besides consumer applications, there are many military- and security-related scenarios where our systems could be used.This project involves advancing fundamental knowledge in developing dynamic energy-efficient and cost-effective sampling techniques and applies engineering principles to address the critical needs of several important and related applications. Specifically, this project involves addressing significant open questions, including deterministic identifiability, performance bounds, and impact of thresholding pattern on spectrum sensing and array processing, radio frequency interference mitigation, and mm-wave communications to gain fundamental insights into the novel paradigm of low resolution sampling with general thresholds, devising novel signal processing algorithms, including effective and efficient sparse signal recovery techniques and parametric maximum likelihood methods for enhanced performance, and evaluating and demonstrating the performance using measured data. This project also involves preparing students for engineering in the 21st century through the incorporation of practical design and problem-solving techniques into both the education curriculum.
CIF:Medium:Collaborative Research:使用广义阈值的低分辨率采样Li Jian Li,Lee Swinlehurst和Mojtaba Soltanian摘要感兴趣的信号的量化是数字信号处理应用中必要的第一步。当感兴趣的是跨宽频带的信号时,需要在采样率、幅度量化精度、成本和功耗之间进行基本的权衡。研究人员研究具有一般阈值的低分辨率采样技术,这些技术负担得起、技术上可行、易于应用、能源效率高,并符合技术趋势。例如,成功的毫米波(毫米波)大规模多输入多输出实施可以在容量和频谱效率方面提供巨大的收益,这可能会对我们几乎在任何地方使用无线系统的性能产生革命性的影响:在家里、在办公室、在学校、通过公共交通或乘飞机通勤、购物、在餐馆、娱乐场所、体育赛事等。除了消费类应用,还有许多与军事和安全相关的场景可以使用我们的系统。该项目涉及提高开发动态节能和成本效益采样技术的基础知识,并应用工程原理来满足几个重要和相关应用的关键需求。具体地说,该项目涉及解决重要的开放问题,包括确定性可识别性、性能界限和阈值模式对频谱感知和阵列处理、射频干扰缓解和毫米波通信的影响,以获得对具有一般阈值的低分辨率采样新范例的基本见解,设计新的信号处理算法,包括有效和高效的稀疏信号恢复技术和用于增强性能的参数最大似然方法,以及使用测量数据评估和演示性能。该项目还包括通过将实用设计和解决问题的技术纳入教育课程,使学生为21世纪的工程做好准备。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Non-Convex Graph Clustering for Big Data
大数据的高效非凸图聚类
  • DOI:
    10.1109/icassp.2018.8462204
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naimipour, Naveed;Soltanalian, Mojtaba
  • 通讯作者:
    Soltanalian, Mojtaba
One-Bit Compressive Sensing: Can We Go Deep and Blind?
  • DOI:
    10.1109/lsp.2022.3187318
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yiming Zeng;Shahin Khobahi;M. Soltanalian
  • 通讯作者:
    Yiming Zeng;Shahin Khobahi;M. Soltanalian
Signal Recovery From 1-Bit Quantized Noisy Samples via Adaptive Thresholding
Low-Rank Matrix Recovery from One-Bit Comparison Information
从一位比较信息恢复低秩矩阵
  • DOI:
    10.1109/icassp.2018.8461367
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bose, Arindam;Ameri, Aria;Klug, Matthew;Soltanalian, Mojtaba
  • 通讯作者:
    Soltanalian, Mojtaba
Covariance Recovery for One-Bit Sampled Non-Stationary Signals With Time-Varying Sampling Thresholds
  • DOI:
    10.1109/tsp.2022.3217379
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Arian Eamaz;Farhang Yeganegi;M. Soltanalian
  • 通讯作者:
    Arian Eamaz;Farhang Yeganegi;M. Soltanalian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mojtaba Soltanalian其他文献

Mojtaba Soltanalian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mojtaba Soltanalian', 18)}}的其他基金

Waveform Design and Processing for Next-Generation Radar Systems - Adaptivity, Agility, and Reliability
下一代雷达系统的波形设计和处理 - 适应性、敏捷性和可靠性
  • 批准号:
    1809225
  • 财政年份:
    2018
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312229
  • 财政年份:
    2023
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
  • 批准号:
    2312666
  • 财政年份:
    2023
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312228
  • 财政年份:
    2023
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
  • 批准号:
    2312547
  • 财政年份:
    2023
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了