CHS: Medium: Collaborative Research: Managing Stress in the Workplace: Unobtrusive Monitoring and Adaptive Interventions
CHS:媒介:协作研究:管理工作场所的压力:不显眼的监控和适应性干预
基本信息
- 批准号:1704636
- 负责人:
- 金额:$ 39.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Workplace stress is a serious problem that has a direct and negative impact on health, happiness, and productivity. Current approaches for both measuring stress and reducing it are limited; measurements typically rely on self-report or obtrusive sensors, while people often don't seek treatment until the stress has built to dangerous levels (or at all, if they are afraid of other people's judgments). Common workplace sources of stress are noise, distractions and time pressure. This project's goal is to develop methods both to detect stress and provide personalized relaxation exercises, in real time and in the work context. To detect stress, the research team will apply machine learning to study how well data from commonly available devices at work such as webcams, fitness trackers, and keyboards can predict individuals' stress levels. To reduce stress, the team will develop a suite of brief relaxation exercises and a system that uses predicted stress levels to recommend different exercises, learning over time which ones work best for a particular person. These predictive models and interventions will be tested in a long-term study in a real office environment, both validating the work and providing direct effects on experimental participants' well-being. The project will also have direct educational impacts for groups underrepresented in STEM fields and generate anonymized datasets that other researchers can use. The team will develop experimental methods to reliably extract stress cues from commodity devices, using a suite of cognitive tasks that represent knowledge work and typical workplace stressors (e.g., time pressure, noise, distractions). Participants will perform the tasks and experience stressors while the team collects behavioral data from the commodity devices and ground truth stress measurements using physiological signals derived from thermal imaging. The team will evaluate how well features derived from the sensed behavioral data, using different sets of devices, can predict the ground truth stress data and how it varies based on specific stressors. The team will also develop a framework to deliver brief stress-reduction exercises that promote deep breathing, a proven effective and learnable stress reduction technique. The team will use iterative prototyping to develop novel, engaging mobile apps that use biofeedback, games, and music to support breathing exercises; these will be delivered by a multi-arm bandit-based recommendation system that considers the current context (predicted stress and stressors, time of day, particular computer activities) along with historical exercise adherence and results to suggest effective exercises. The stress sensing models and intervention framework will be validated through a series of lab and field studies with information workers at a software company, collecting stress data in situ with ecological momentary assessment techniques, validated survey instruments for stress and affect, and interviews.
工作压力是一个严重的问题,对健康,幸福和生产力有直接和负面的影响。 目前测量压力和减轻压力的方法都很有限;测量通常依赖于自我报告或强迫性传感器,而人们通常不会寻求治疗,直到压力达到危险水平(或者根本不会,如果他们害怕别人的判断)。工作场所的常见压力来源是噪音、分心和时间压力。该项目的目标是开发方法来检测压力和提供个性化的放松练习,在真实的时间和工作环境。 为了检测压力,研究团队将应用机器学习来研究工作中常用设备(如网络摄像头、健身追踪器和键盘)的数据如何预测个人的压力水平。 为了减轻压力,该团队将开发一套简短的放松练习和一个系统,该系统使用预测的压力水平来推荐不同的练习,随着时间的推移,学习哪些练习最适合特定的人。 这些预测模型和干预措施将在真实的办公室环境中进行长期研究,验证工作并对实验参与者的健康产生直接影响。 该项目还将对STEM领域代表性不足的群体产生直接的教育影响,并生成其他研究人员可以使用的匿名数据集。该团队将开发实验方法,使用一套代表知识工作和典型工作场所压力源的认知任务(例如,时间压力、噪音、干扰)。 参与者将执行任务并体验压力源,而团队将使用来自热成像的生理信号从商品设备和地面真实压力测量中收集行为数据。 该团队将评估使用不同设备集从感知行为数据中获得的特征如何预测地面真实压力数据以及它如何根据特定压力源而变化。 该团队还将开发一个框架,提供简短的减压练习,促进深呼吸,这是一种有效且可学习的减压技术。 该团队将使用迭代原型来开发新颖的、吸引人的移动的应用程序,这些应用程序使用生物反馈、游戏和音乐来支持呼吸练习;这些应用程序将由基于多臂Bandit的推荐系统提供,该推荐系统考虑当前环境(预测的压力和压力源、一天中的时间、特定的计算机活动)沿着历史锻炼坚持性和结果,以建议有效的锻炼。 压力感知模型和干预框架将通过一系列的实验室和现场研究与信息工作者在一家软件公司,收集压力数据与生态瞬时评估技术,验证调查工具的压力和影响,和采访。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Individual Differences in Blocking Workplace Distractions
个体差异对阻止工作场所干扰的影响
- DOI:10.1145/3173574.3173666
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Mark, Gloria;Czerwinski, Mary;Iqbal, Shamsi T.
- 通讯作者:Iqbal, Shamsi T.
Towards Participant-Independent Stress Detection Using Instrumented Peripherals
使用仪表外设实现独立于参与者的压力检测
- DOI:10.1109/taffc.2021.3061417
- 发表时间:2021
- 期刊:
- 影响因子:11.2
- 作者:Dacunhasilva, Dennis Rodrigo;Wang, Zelun;Gutierrez-Osuna, Ricardo
- 通讯作者:Gutierrez-Osuna, Ricardo
An Empirical Study Comparing Unobtrusive Physiological Sensors for Stress Detection in Computer Work
- DOI:10.3390/s19173766
- 发表时间:2019-09-01
- 期刊:
- 影响因子:3.9
- 作者:Akbar, Fatema;Mark, Gloria;Gutierrez-Osuna, Ricardo
- 通讯作者:Gutierrez-Osuna, Ricardo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Gutierrez-Osuna其他文献
Context-sensitive intra-class clustering
- DOI:
10.1016/j.patrec.2013.04.031 - 发表时间:
2014-02-01 - 期刊:
- 影响因子:
- 作者:
Yingwei Yu;Ricardo Gutierrez-Osuna;Yoonsuck Choe - 通讯作者:
Yoonsuck Choe
Web GIS in practice X: a Microsoft Kinect natural user interface for Google Earth navigation
- DOI:
10.1186/1476-072x-10-45 - 发表时间:
2011-07-26 - 期刊:
- 影响因子:3.200
- 作者:
Maged N Kamel Boulos;Bryan J Blanchard;Cory Walker;Julio Montero;Aalap Tripathy;Ricardo Gutierrez-Osuna - 通讯作者:
Ricardo Gutierrez-Osuna
Ricardo Gutierrez-Osuna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo Gutierrez-Osuna', 18)}}的其他基金
Convergence Accelerator Workshop - Chemical sensing with an olfaction analogue: high-dimensional, bio-inspired sensing and computation
融合加速器研讨会 - 具有嗅觉模拟的化学传感:高维、仿生传感和计算
- 批准号:
2231512 - 财政年份:2022
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive explicit and implicit feedback in second language pronunciation training
合作研究:第二语言发音训练中的自适应显式和隐式反馈
- 批准号:
2016959 - 财政年份:2020
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Developing Golden Speakers for Second-Language Pronunciation Training
RI:小型:合作研究:开发第二语言发音训练的黄金音箱
- 批准号:
1619212 - 财政年份:2016
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
EXP: Collaborative Research: Perception and Production in Second Language: The Roles of Voice Variability and Familiarity
EXP:协作研究:第二语言的感知和产生:语音变异性和熟悉度的作用
- 批准号:
1623750 - 财政年份:2016
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Integrated Sensing and Acting with Tunable Chemical Sensors
使用可调谐化学传感器集成传感和操作
- 批准号:
1002028 - 财政年份:2010
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
RI: Collaborative Research: Foreign accent conversion through articulatory inversion of the vocal-tract frontal cavity
RI:合作研究:通过声道额腔的发音倒转进行外国口音转换
- 批准号:
0713205 - 财政年份:2008
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
CAREER: Computational Models for Sensor-Based Machine Olfaction
职业:基于传感器的机器嗅觉的计算模型
- 批准号:
0229598 - 财政年份:2002
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
CAREER: Computational Models for Sensor-Based Machine Olfaction
职业:基于传感器的机器嗅觉的计算模型
- 批准号:
9984426 - 财政年份:2000
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
相似海外基金
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
- 批准号:
2343187 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
- 批准号:
2236644 - 财政年份:2022
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Regional Experiments for the Future of Work in America
CHS:媒介:合作研究:美国未来工作的区域实验
- 批准号:
2243330 - 财政年份:2021
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: From Hobby to Socioeconomic Driver: Innovation Pathways to Professional Making in Asia and the American Midwest
CHS:媒介:协作研究:从爱好到社会经济驱动力:亚洲和美国中西部专业制造的创新之路
- 批准号:
2224258 - 财政年份:2021
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Computer-Aided Design and Fabrication for General-Purpose Knit Manufacturing
CHS:媒介:协作研究:通用针织制造的计算机辅助设计和制造
- 批准号:
1955444 - 财政年份:2020
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Teachable Activity Trackers for Older Adults
CHS:媒介:协作研究:针对老年人的可教学活动追踪器
- 批准号:
1955590 - 财政年份:2020
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Code demography: Addressing information needs at scale for programming interface users and designers
CHS:媒介:协作研究:代码人口统计:大规模解决编程接口用户和设计者的信息需求
- 批准号:
1955699 - 财政年份:2020
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Reearch: Bio-behavioral data analytics to enable personalized training of veterans for the future workforce
CHS:中:协作研究:生物行为数据分析,为未来的劳动力提供退伍军人的个性化培训
- 批准号:
1955721 - 财政年份:2020
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Fabric-Embedded Dynamic Sensing for Adaptive Exoskeleton Assistance
CHS:媒介:协作研究:用于自适应外骨骼辅助的织物嵌入式动态传感
- 批准号:
1955979 - 财政年份:2020
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Computer-Aided Design and Fabrication for General-Purpose Knit Manufacturing
CHS:媒介:协作研究:通用针织制造的计算机辅助设计和制造
- 批准号:
1956085 - 财政年份:2020
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant