CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
基本信息
- 批准号:1704828
- 负责人:
- 金额:$ 36.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-dimensional signal estimation plays fundamental roles in various engineering and science applications, such as medical imaging, video and network surveillance. Estimation procedures that maintain both statistical and computational efficacy are of great practical value, which translate into desiderata such as less time patients need to spend in a medical scanner, faster response to cyber attacks, and capabilities to handle very large datasets. While a lot of signal estimation tasks are naturally formulated as nonconvex optimization problems, existing results for nonconvex methods have several fundamental limitations, and the current state of the art is still limited in terms of when, why and which nonconvex approaches are effective for a given problem. The goal of this research program is to significantly deepen and broaden the understanding and applications of nonconvex optimization for high-dimensional signal estimation.In this project, the investigators will study high-dimensional signal estimation via direct optimization of nonconvex, and potentially nonsmooth, loss functions, without resorting to convex relaxation. This research will explore geometric structures shared by nonconvex functions commonly encountered in signal estimation, and study the fundamental roles these structures play in determining the algorithmic convergence. These results will then be exploited as guidelines to develop fast and provably correct algorithms for estimating high-dimensional signals with physically induced structures and under streaming data observations. Specifically, the research program consists of three major thrusts: (1) understanding the geometric structures of important classes of nonconvex loss surfaces, and characterizing their impact on the convergence of optimization algorithms; (2) developing fast algorithms and the associated theory for the recovery of structured low-rank matrices; (3) designing new online algorithms that are time and space efficient under a streaming setting, with the capability of detecting and tracking the time-varying signals of interest.
高维信号估计在医学成像、视频和网络监控等各种工程和科学应用中起着重要的作用。保持统计和计算效率的估计程序具有很大的实用价值,这转化为迫切需要,例如患者需要在医疗扫描仪上花费更少的时间,更快地响应网络攻击,以及处理非常大的数据集的能力。虽然许多信号估计任务自然地被公式化为非凸优化问题,但非凸方法的现有结果具有几个基本限制,并且在何时、为什么以及哪些非凸方法对于给定问题是有效的方面,现有技术仍然是有限的。本研究课题的目的是为了深化和拓宽非凸优化在高维信号估计中的理解和应用。在本课题中,研究人员将通过直接优化非凸的、潜在非光滑的损失函数来研究高维信号估计,而不需要借助凸松弛。本研究将探讨信号估计中常见的非凸函数所共有的几何结构,并研究这些结构在确定算法收敛性方面所起的基本作用。然后,这些结果将被利用作为指导方针,以开发快速和可证明正确的算法,用于估计高维信号与物理诱导的结构和流数据观测。具体而言,该研究计划包括三个主要方向:(1)理解重要类别的非凸损失曲面的几何结构,并表征它们对优化算法收敛性的影响:(2)发展结构低秩矩阵恢复的快速算法和相关理论;(3)设计新的在线算法,其在流设置下是时间和空间有效的,具有检测和跟踪感兴趣的时变信号的能力。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Achieving the Bayes Error Rate in Stochastic Block Model by SDP, Robustly
通过 SDP 鲁棒地实现随机块模型中的贝叶斯错误率
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Fei, Yingjie;Chen, Yudong
- 通讯作者:Chen, Yudong
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium
- DOI:
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Qiaomin Xie;Yudong Chen;Zhaoran Wang;Zhuoran Yang
- 通讯作者:Qiaomin Xie;Yudong Chen;Zhaoran Wang;Zhuoran Yang
Random Fourier Features via Fast Surrogate Leverage Weighted Sampling
- DOI:10.1609/aaai.v34i04.5920
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Fanghui Liu;Xiaolin Huang;Yudong Chen;Jie Yang;J. Suykens
- 通讯作者:Fanghui Liu;Xiaolin Huang;Yudong Chen;Jie Yang;J. Suykens
Global Convergence of the EM Algorithm for Mixtures of Two Component Linear Regression
二元线性回归混合的 EM 算法的全局收敛性
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Kwon, Jeongyeol;Qian, Wei;Caramanis, Constantine;Chen, Yudong;Davis, Damek
- 通讯作者:Davis, Damek
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
- DOI:
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:Dong Yin;Yudong Chen;K. Ramchandran;P. Bartlett
- 通讯作者:Dong Yin;Yudong Chen;K. Ramchandran;P. Bartlett
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yudong Chen其他文献
Evaluation of Mercury Uptake and Distribution in Rice (Oryza sativa L.)
水稻 (Oryza sativa L.) 汞吸收和分布的评价
- DOI:
10.1007/s00128-017-2237-9 - 发表时间:
2018-03 - 期刊:
- 影响因子:2.7
- 作者:
Xiaoshuai Hang;Fangqun Gan;Yudong Chen;Xiaoqin Chen;Huoyan Wang;Changwen Du;Jianmin Zhou - 通讯作者:
Jianmin Zhou
Tailoring spin angular momentum: Design principles for plasmonic nanostructures
定制自旋角动量:等离子体纳米结构的设计原理
- DOI:
- 发表时间:
- 期刊:
- 影响因子:4.6
- 作者:
Wen Xiao;Yudong Chen;Kui Han;Xiaopeng Shen;Weihua Wang - 通讯作者:
Weihua Wang
Local Minima Structures in Gaussian Mixture Models
高斯混合模型中的局部极小结构
- DOI:
10.1109/tit.2024.3374716 - 发表时间:
2020 - 期刊:
- 影响因子:2.5
- 作者:
Yudong Chen;Dogyoon Song;Xumei Xi;Yuqian Zhang - 通讯作者:
Yuqian Zhang
Sandwich-like PPy/NiCo-LDH heterostructure for high-performance flexible supercapacitors
用于高性能柔性超级电容器的类三明治结构的聚吡咯/镍钴 - 层状双氢氧化物异质结构
- DOI:
10.1016/j.apsusc.2025.162641 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:6.900
- 作者:
Leilin Zhuo;Huangqing Zhang;Qingwei Huang;Yudong Chen;Xiaohong Liu;Qian Cai;Wengong Zhang;Hong Chen;Zhenghuan Lin;Qidan Ling - 通讯作者:
Qidan Ling
Yudong Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yudong Chen', 18)}}的其他基金
CAREER: Embracing Local Minima and Nonsmoothness in Nonconvex Statistical Estimation: From Structures to Algorithms
职业:在非凸统计估计中拥抱局部极小值和非平滑性:从结构到算法
- 批准号:
2047910 - 财政年份:2021
- 资助金额:
$ 36.91万 - 项目类别:
Continuing Grant
CAREER: Embracing Local Minima and Nonsmoothness in Nonconvex Statistical Estimation: From Structures to Algorithms
职业:在非凸统计估计中拥抱局部极小值和非平滑性:从结构到算法
- 批准号:
2233152 - 财政年份:2021
- 资助金额:
$ 36.91万 - 项目类别:
Continuing Grant
CRII: CIF: Limits and Robustness of Nonconvex Low-Rank Estimation
CRII:CIF:非凸低秩估计的局限性和鲁棒性
- 批准号:
1657420 - 财政年份:2017
- 资助金额:
$ 36.91万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 36.91万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312229 - 财政年份:2023
- 资助金额:
$ 36.91万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 36.91万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
- 批准号:
2312666 - 财政年份:2023
- 资助金额:
$ 36.91万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312228 - 财政年份:2023
- 资助金额:
$ 36.91万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
- 批准号:
2312547 - 财政年份:2023
- 资助金额:
$ 36.91万 - 项目类别:
Continuing Grant