Collaborative Research: High-performance water purification membranes made of 2D zeolite nanosheets
合作研究:二维沸石纳米片制成的高性能水净化膜
基本信息
- 批准号:1706059
- 负责人:
- 金额:$ 19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Collaborative Proposal PI: Baoxia Mi/Dongxia LiuProposal Number: 1706059/1705284 Clean water production has become a global challenge as the world water demand is approaching the available fresh water supply. Membrane technology holds great promise for solving this problem by supplying fresh water through purification of nontraditional sources such as seawater, brackish water, and wastewater. Typically, polymeric semi-permeable membranes have been used in the purification process. Polymeric membranes are effective in removing salt from water, but they suffer from membrane fouling, low chlorine tolerance, and low water permeability, leading to high capital and maintenance costs. A focus of this project is to overcome these problems by developing a next-generation membrane using a novel 2-dimensional (2-D) zeolite nanomaterial. High-performance zeolite membranes may have other applications in other areas, such as point-of-use water treatment, renewable energy production, and drug delivery. The educational activities particularly target K-12 female students, underrepresented minority groups, and the general public. Both the diversity of students in engineering careers and the public interest in science and technology will be enhanced. The knowledge gained from this project may help guide the design of new processes to help resolve the global water crisis. The Principle Investigators plan to exploit the unique properties of 2-D zeolite nanosheets as radically new materials to make high-performance membranes for water purification. One problem impeding zeolite membranes from realizing their potential in water purification applications is the difficulty of achieving high zeolite loading in the synthesized membrane; therefore, developing highly efficient strategies to drastically increase zeolite loading without sacrificing membrane mechanical strength or structural integrity will be a research focus. The PIs take a novel interdisciplinary approach that: (1) exploits the emerging 2-D zeolite nanosheets that have a higher external surface area, more surface functional groups, and a unique flexible shape, all of which will lead to much enhanced physicochemical properties of membranes when compared with those generated by 3-D zeolite nanoparticles used in all previous studies; (2) customizes a layer-by-layer technique that will ideally assemble the 2-D zeolite nanosheets into an ultra-thin zeolite membrane with extremely high loading and significantly improved performance in water purification; and (3) performs a thorough investigation to elucidate the underlying mechanisms for the water/contaminant transport and to evaluate the potential in-situ regeneration and long-term stability of the novel zeolite membranes. Compared with traditional polyamide or previous zeolite-polymer nanocomposite membranes, the zeolite nanosheet membrane will offer many significant advantages including: (1) higher zeolite loading, (2) higher water permeability, (3) improved fouling control through in-situ regeneration, and (4) improved chemical stability. The PIs investigate the structure/function of the zeolite nanosheet membrane and the water and solute transport in these novel zeolite membranes.
合作提案PI:Baoxia Mi/Dongxia Liu提案编号:1706059/1705284随着世界水需求量接近可利用的淡水供应量,清洁水生产已成为一项全球性挑战。膜技术通过净化非传统来源如海水、微咸水和废水来供应淡水,从而为解决这一问题带来了巨大的希望。通常,在纯化过程中使用聚合物半透膜。聚合物膜在从水中去除盐方面是有效的,但是它们遭受膜污染、低氯耐受性和低水渗透性,导致高的资金和维护成本。该项目的重点是通过开发使用新型二维(2-D)沸石纳米材料的下一代膜来克服这些问题。 高性能沸石膜可能在其他领域有其他应用,如使用点水处理,可再生能源生产和药物输送。教育活动特别针对K-12女学生、代表性不足的少数群体和公众。工程专业学生的多样性和公众对科学和技术的兴趣都将得到加强。从该项目中获得的知识可能有助于指导新工艺的设计,以帮助解决全球水危机。主要研究人员计划利用2-D沸石纳米片的独特性能作为全新的材料来制造用于水净化的高性能膜。阻碍沸石膜在水净化应用中实现其潜力的一个问题是难以在合成膜中实现高沸石负载;因此,开发高效策略以大幅增加沸石负载而不牺牲膜机械强度或结构完整性将是研究焦点。 PI采用了一种新的跨学科方法:(1)利用新兴的2-D沸石纳米片,其具有更高的外表面积,更多的表面官能团和独特的柔性形状,所有这些都将导致膜的物理化学性能大大增强,当与以前所有研究中使用的3-D沸石纳米颗粒相比时;(2)定制逐层技术,该技术将理想地将2-D沸石纳米片组装成超薄沸石膜,该超薄沸石膜具有极高的负载和显著改善的水净化性能;和(3)进行彻底的调查,以阐明水/污染物传输的基本机制,并评估潜在的原位再生和长期-新型沸石膜的长期稳定性。与传统的聚酰胺或先前的沸石-聚合物纳米复合膜相比,沸石纳米片膜将提供许多显著的优点,包括:(1)更高的沸石负载,(2)更高的水渗透性,(3)通过原位再生改善的污垢控制,和(4)改善的化学稳定性。PI研究了沸石纳米片膜的结构/功能以及这些新型沸石膜中的水和溶质传输。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Highly Efficient Removal and Sequestration of Cr(VI) in Confined MoS2 Interlayer Nanochannels: Performance and Mechanism
- DOI:10.1016/j.seppur.2022.121104
- 发表时间:2022-04
- 期刊:
- 影响因子:8.6
- 作者:Qi Han;Julie Yu;Sidney Poon;L. Sun;Minerva Teli;Bei Liu;Hong Chen;Kunkun Wang;Zhongying Wan
- 通讯作者:Qi Han;Julie Yu;Sidney Poon;L. Sun;Minerva Teli;Bei Liu;Hong Chen;Kunkun Wang;Zhongying Wan
Nanofibrous hydrogel-reduced graphene oxide membranes for effective solar-driven interfacial evaporation and desalination
- DOI:10.1016/j.cej.2021.129998
- 发表时间:2021-04-29
- 期刊:
- 影响因子:15.1
- 作者:Zang, Linlin;Sun, Liguo;Mi, Baoxia
- 通讯作者:Mi, Baoxia
Interfacial Solar Evaporation by a 3D Graphene Oxide Stalk for Highly Concentrated Brine Treatment
- DOI:10.1021/acs.est.1c04010
- 发表时间:2021-11-05
- 期刊:
- 影响因子:11.4
- 作者:Finnerty, Casey T. K.;Menon, Akanksha K.;Mi, Baoxia
- 通讯作者:Mi, Baoxia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baoxia Mi其他文献
Sacrificial membranes in water purification: Concepts, current status, and outlook
水净化中的牺牲膜:概念、现状与展望
- DOI:
10.1016/j.seppur.2025.131748 - 发表时间:
2025-07-30 - 期刊:
- 影响因子:9.000
- 作者:
Kelly M. Conway;Baoxia Mi - 通讯作者:
Baoxia Mi
Baoxia Mi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baoxia Mi', 18)}}的其他基金
CAREER: Graphene-enabled Synthesis and Surface Modification of Water Separation Membranes
职业:水分离膜的石墨烯合成和表面改性
- 批准号:
1565452 - 财政年份:2015
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
CAREER: Graphene-enabled Synthesis and Surface Modification of Water Separation Membranes
职业:水分离膜的石墨烯合成和表面改性
- 批准号:
1351430 - 财政年份:2014
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Integration of Experiments and Simulations for Molecular-Level Understanding of Membrane Fouling Mechanisms
实验与模拟相结合,从分子层面理解膜污染机制
- 批准号:
1158601 - 财政年份:2011
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the Mechanisms for Inhibition of Biofouling on Polymeric Membranes Modified with Polyelectrolyte Multilayers and Antimicrobial Nanoparticles
合作研究:阐明聚电解质多层膜和抗菌纳米颗粒改性聚合物膜抑制生物污垢的机制
- 批准号:
1154572 - 财政年份:2011
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the Mechanisms for Inhibition of Biofouling on Polymeric Membranes Modified with Polyelectrolyte Multilayers and Antimicrobial Nanoparticles
合作研究:阐明聚电解质多层膜和抗菌纳米颗粒改性聚合物膜抑制生物污垢的机制
- 批准号:
1134233 - 财政年份:2011
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Integration of Experiments and Simulations for Molecular-Level Understanding of Membrane Fouling Mechanisms
实验与模拟相结合,从分子层面理解膜污染机制
- 批准号:
1034158 - 财政年份:2010
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400166 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
- 批准号:
2420369 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403399 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400165 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant