New regimes of quantum optomechanics using superfluid-filled cavities

使用超流体填充腔的量子光力学新机制

基本信息

  • 批准号:
    1707703
  • 负责人:
  • 金额:
    $ 47.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

The work supported by this award will seek to deepen the understanding of how light waves can be used to control sound waves, and vice versa. The team will use "optomechanical" control to study the quantum behavior of macroscopic objects. This is an area of particular interest for fundamental science and for potential technological applications. From a fundamental point of view, the laws of quantum mechanics describe a world in which objects may behave as though they are in multiple places at once, and in which measurements unavoidably disturb the object that is measured. These strange effects are most obvious in the behavior of small objects, and tend to become more obscured the larger the object is. Nevertheless, quantum mechanics predicts that these effects can be observed in any object that is sufficiently well isolated from heat and friction, and which is measured with sufficient sensitivity. In this project, quantum effects in the motion of a small volume of superfluid liquid helium will be studied. Superfluid liquid helium can be cooled to exceptionally low temperatures and offers extremely low levels of friction. Additionally, superfluid liquid helium is compatible with ultrasensitive laser-based measurements that are ideally suited to induce, control, and measure the liquid's quantum motion. Studying the quantum motion of macroscopic objects (and liquid objects in particular) will represent important scientific progress, as it will explore long-standing questions about our ability to access and control quantum effects in a new class of objects. It will also allow the team to explore the how to develop superfluid optomechanical devices for applications such as advanced sensing and communications technologies.The goal of the project is to access qualitatively new regimes of quantum optomechanics. Specifically, the team will study non-Gaussian quantum effects in the motion of macroscopic objects, both when this motion can be described in terms of conventional normal modes and when this description breaks down. To accomplish this, they will use optomechanical devices that consist of a miniature Fabry-Perot cavity filled (or partially filled) with superfluid liquid He. The work will build on prior results with similar devices and will combine new conceptual and technical advances in order to realize new capabilities. These advances fall into three categories. First, the team will adapt single-photon and single-phonon detection techniques for use with superfluid-based devices. Second, the team will engineer devices in which the surface waves of a superfluid body couple to the optical modes of a high-finesse cavity. Third, the team will use multimode optomechanical coupling to study the quantum behaviors of systems with strong non-reciprocity and non-trivial topological features. The proposed activity will advance scientific knowledge on multiple fronts. Accessing and controlling non-Gaussian states in optomechanical systems will enable the group to perform a broad class of quantum sensing and information processing tasks that to date have been out of their reach. Providing access to a wide range of distinctly quantum effects in massive objects will also provide a route towards testing specific questions related to quantum gravity, discrete space-time, and modifications of quantum mechanics (such as spontaneous collapse models). Measuring Gaussian and non-Gaussian quantum effects in multimode devices that can be tuned to access non-reciprocal and topologically non-trivial dynamics will also represent an important advance. This is because in the classical regime, the conventional normal mode description of coupled oscillators breaks down in such systems, as do some key aspects of adiabaticity, and it is unclear at present how this breakdown will alter the system's quantum behavior. This highlights the opportunities for discovery that will come from exploring this system.
该奖项支持的工作将寻求加深对光波如何用于控制声波的理解,反之亦然。该团队将使用“光学机械”控制来研究宏观物体的量子行为。这是基础科学和潜在技术应用特别感兴趣的领域。从基本的观点来看,量子力学定律描述了一个世界,在这个世界中,物体的行为就像它们同时在多个地方一样,并且在这个世界中,测量会不可避免地干扰被测量的物体。这些奇怪的效果在小物体的行为中最为明显,并且物体越大,这种效果就越模糊。 然而,量子力学预测,这些效应可以在任何与热和摩擦充分隔离的物体中观察到,并且以足够的灵敏度测量。在这个项目中,将研究小体积超流液氦运动中的量子效应。超流液氦可以被冷却到极低的温度,并提供极低的摩擦水平。 此外,超流液氦与超灵敏的基于激光的测量兼容,非常适合于诱导,控制和测量液体的量子运动。研究宏观物体(特别是液体物体)的量子运动将代表重要的科学进步,因为它将探索长期存在的关于我们在一类新物体中访问和控制量子效应的能力的问题。它还将使团队能够探索如何开发用于先进传感和通信技术等应用的超流体光学机械设备。该项目的目标是获得量子光学力学的新制度。具体来说,该团队将研究宏观物体运动中的非高斯量子效应,无论是当这种运动可以用传统的正常模式来描述时,还是当这种描述被打破时。为了实现这一点,他们将使用光学机械装置,该装置由填充(或部分填充)超流液体He的微型法布里-珀罗腔组成。这项工作将建立在类似装置的先前成果的基础上,并将联合收割机结合新的概念和技术进步,以实现新的能力。这些进展分为三类。首先,该团队将调整单光子和单声子检测技术,用于基于超流体的设备。其次,该团队将设计超流体的表面波与高精频腔的光学模式耦合的设备。第三,该团队将使用多模光机械耦合来研究具有强非互易性和非平凡拓扑特征的系统的量子行为。拟议的活动将在多个方面推进科学知识。光学机械系统中的非高斯状态的测量和控制将使该小组能够执行广泛的量子传感和信息处理任务,这些任务迄今为止已经超出了他们的范围。提供对大质量物体中广泛的明显量子效应的访问也将为测试与量子引力,离散时空和量子力学的修改(如自发坍缩模型)有关的特定问题提供一条途径。在多模设备中测量高斯和非高斯量子效应,可以调整到访问非互易和拓扑非平凡的动力学也将代表一个重要的进步。这是因为在经典体系中,耦合振子的常规简正模描述在这样的系统中失效,绝热性的一些关键方面也是如此,目前还不清楚这种失效将如何改变系统的量子行为。 这突出了探索这个系统所带来的发现机会。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jack Harris其他文献

Measurements of Landau-level crossings and extended states in magnetic two-dimensional electron gases
磁性二维电子气中朗道能级交叉和扩展态的测量
  • DOI:
    10.1103/physrevb.65.235327
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    R. Knobel;N. Samarth;Jack Harris;D. Awschalom
  • 通讯作者:
    D. Awschalom
Spin-exchange collisions of submerged shell atoms below 1 Kelvin.
低于 1 开尔文的水下壳层原子的自旋交换碰撞。
  • DOI:
    10.1103/physrevlett.99.223201
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Jack Harris;Scott V. Nguyen;S. C. Doret;W. Ketterle;John M. Doyle
  • 通讯作者:
    John M. Doyle
Visual Based Reference for Enhanced Audio-Video Source Extraction
用于增强音频-视频源提取的基于视觉的参考
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jack Harris;N. Mohsen;B. Rivet;J. Chambers;C. Jutten
  • 通讯作者:
    C. Jutten
Primate archaeology
灵长类动物考古学
  • DOI:
    10.1038/nature08188
  • 发表时间:
    2009-07-16
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Michael Haslam;Adriana Hernandez-Aguilar;Victoria Ling;Susana Carvalho;Ignacio de la Torre;April DeStefano;Andrew Du;Bruce Hardy;Jack Harris;Linda Marchant;Tetsuro Matsuzawa;William McGrew;Julio Mercader;Rafael Mora;Michael Petraglia;Hélène Roche;Elisabetta Visalberghi;Rebecca Warren
  • 通讯作者:
    Rebecca Warren
We are the benchmark for others’ Dr. Jack Harris Installed as ADA’s 129th President
  • DOI:
    10.14219/jada.archive.1992.0315
  • 发表时间:
    1992-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jack Harris
  • 通讯作者:
    Jack Harris

Jack Harris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jack Harris', 18)}}的其他基金

Superfluid Optomechanics
超流体光力学
  • 批准号:
    1205861
  • 财政年份:
    2012
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Continuing Grant
Experimental Studies of Persistent Currents in Normal Metals
普通金属中持续电流的实验研究
  • 批准号:
    1106110
  • 财政年份:
    2011
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Continuing Grant
Quantum Cavity Optomechanics
量子腔光力学
  • 批准号:
    0855455
  • 财政年份:
    2009
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Continuing Grant
Studies of Mesoscopic Metal Rings with Cantilever Magnetometers
用悬臂磁强计研究细观金属环
  • 批准号:
    0706380
  • 财政年份:
    2007
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Continuing Grant
2008 Mechanical Systems in the Quantum Regime Gordon Research Conference
2008 年量子体系中的机械系统戈登研究会议
  • 批准号:
    0755108
  • 财政年份:
    2007
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Standard Grant
Cavity Quantum Optics with Radiation Pressure
辐射压腔量子光学
  • 批准号:
    0555824
  • 财政年份:
    2006
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Continuing Grant
Renovation of Space for Research and Research Training of Women
女性研究和研究培训空间的翻新
  • 批准号:
    9415046
  • 财政年份:
    1995
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Standard Grant

相似海外基金

RAPID: Effects of changing wildfire regimes on soil carbon fluxes during and following fire
RAPID:改变野火状况对火灾期间和火灾后土壤碳通量的影响
  • 批准号:
    2420420
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Standard Grant
New Bail Regimes: Reconceptualising Risk to Reduce Remand Imprisonment
新的保释制度:重新概念化风险以减少还押监禁
  • 批准号:
    DE240101215
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Discovery Early Career Researcher Award
Non-Western Migration Regimes in a Global Perspective - MARS
全球视角下的非西方移民制度 - MARS
  • 批准号:
    EP/Z000416/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Research Grant
Collaborative Research: Mesoscale Predictability Across Climate Regimes
合作研究:跨气候机制的中尺度可预测性
  • 批准号:
    2312316
  • 财政年份:
    2023
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Standard Grant
Direct numerical simulations of droplet break-up in turbulence in inertial and viscous regimes
惯性和粘性状态下湍流中液滴破裂的直接数值模拟
  • 批准号:
    2242512
  • 财政年份:
    2023
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Standard Grant
Collaborative Research: SHINE--Exploring Reconnection-Driven Solar Explosive Events in Different Regimes through Modeling and Observation
合作研究:SHINE——通过建模和观测探索不同状态下重新连接驱动的太阳爆炸事件
  • 批准号:
    2301338
  • 财政年份:
    2023
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Continuing Grant
Quantifying spatial and temporal patterns of natural disturbances in forests across Japan: Mapping disturbance regimes by satellite images
量化日本各地森林自然扰动的时空模式:通过卫星图像绘制扰动区域图
  • 批准号:
    23K19303
  • 财政年份:
    2023
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Determining the potential for soil carbon storage under different fire regimes in drylands
确定旱地不同火情下土壤碳储存的潜力
  • 批准号:
    EP/X042863/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Research Grant
Remittance Regimes: Migrational (inter)dependencies between Russia and Eurasia and the comparative effects on political and institutional development
汇款制度:俄罗斯和欧亚大陆之间的移民(相互)依赖以及对政治和制度发展的比较影响
  • 批准号:
    2888723
  • 财政年份:
    2023
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Studentship
The Rise and Transformation of Personalist Regimes in Russia, Belarus, and Kazakhstan
俄罗斯、白俄罗斯和哈萨克斯坦个人主义政权的兴起和转型
  • 批准号:
    23K01237
  • 财政年份:
    2023
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了