Studies of Mesoscopic Metal Rings with Cantilever Magnetometers
用悬臂磁强计研究细观金属环
基本信息
- 批准号:0706380
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-11-01 至 2011-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****NON-TECHNICAL ABSTRACT****Although the term "artificial atoms" is often applied to small electronic components which exhibit quantum effects, there is an important difference between such devices and real atoms: real atoms are not connected to wires and are not part of a circuit which includes macroscopic room-temperature electronics. Atoms are "closed" systems, which interact with their environment and/or measuring apparatus only very weakly or very intermittently. This project's goal is to develop a means for studying quantum-scale electronic devices in a setting much more analogous to that of real atoms. Micrometer-scale circuits (small enough for quantum effects to be important) will be fabricated and measures by placing them on the ends of ultrasensitive micromechanical oscillators. The circuits will thus be electrically isolated, and will be "read out" only by the motion of the mechanical device. It is expected this approach will enable the measurement of "persistent currents": currents that flow without dissipation even in non-superconducting metals. The properties of these currents are an outstanding controversy in this field. Persistent currents directly probe interactions between electrons and the effect of a dissipative environment on electronic systems. These topics are crucial to our understanding of many-body physics and quantum information processing in solid-state systems. As a result a conclusive experimental study of persistent currents would be of interest to a broad range of scientific fields and technology. Students and postdocs working on this project will become experts on low noise measurements, cryogenics, microfabrication and micromachining, vacuum, and optics techniques. They will be well prepared to take their place in the future scientific workforce. **** TECHNICAL ABSTRACT****The goal of this project is to use micromechanical detectors to study closed mesoscopic electronic systems. This project will integrate micron-scale circuits into ultrasensitive cantilevers and use the cantilever's response to study the quantum properties of these circuits. A primary goal will be to clarify our understanding of persistent currents in normal metals. The cantilevers will be used as torsional magnetometers to study rings of various sizes and materials as a function of temperature, magnetic field, and electromagnetic environment. Mesoscopic phenomena (such as persistent currents) are known to be very sensitive to magnetic impurities and microwave interference. Thus, these aspects will be a particular focus of the project. In the longer term, the cantilever's dynamics will be used to probe the rings' low-lying electronic excitations as well as rings incorporating more complex components such as Josephson junctions, quantum dots, nanowires, or graphene. Persistent currents directly probe electron-electron interactions and the effect of a dissipative environment on electronic systems. These topics are crucial to our understanding of many-body physics and quantum information processing in solid-state systems. As a result a conclusive experimental study of persistent currents would be of interest to a broad range of fields. Students and postdocs working on this project will become experts on low noise measurements, cryogenics, microfabrication and micromachining, vacuum, and optics techniques. They will be well prepared to take their place in the future scientific workforce.
****非技术摘要****虽然术语“人造原子”通常应用于表现出量子效应的小型电子元件,但此类设备与真实原子之间存在重要区别:真实原子不连接到电线,也不是包括宏观室温电子器件的电路的一部分。原子是“封闭”系统,其与其环境和/或测量装置的相互作用非常微弱或非常间歇。该项目的目标是开发一种在更类似于真实原子的环境中研究量子级电子设备的方法。微米级电路(小到足以使量子效应变得重要)将被制造并通过将它们放置在超灵敏微机械振荡器的末端来测量。因此,电路将被电隔离,并且只能通过机械装置的运动来“读出”。预计这种方法将能够测量“持续电流”:即使在非超导金属中也不会耗散的电流。这些电流的特性是该领域的一个突出争议。持续电流直接探测电子之间的相互作用以及耗散环境对电子系统的影响。这些主题对于我们理解固态系统中的多体物理和量子信息处理至关重要。因此,对持续电流的结论性实验研究将引起广泛的科学领域和技术的兴趣。从事该项目的学生和博士后将成为低噪声测量、低温学、微制造和微加工、真空和光学技术方面的专家。他们将为在未来的科学队伍中占据一席之地做好充分准备。 **** 技术摘要**** 该项目的目标是使用微机械探测器来研究封闭介观电子系统。该项目将把微米级电路集成到超灵敏悬臂中,并利用悬臂的响应来研究这些电路的量子特性。主要目标是澄清我们对普通金属中持续电流的理解。悬臂将用作扭转磁力计,以研究各种尺寸和材料的环随温度、磁场和电磁环境的变化。众所周知,介观现象(例如持续电流)对磁性杂质和微波干扰非常敏感。因此,这些方面将成为该项目的特别重点。从长远来看,悬臂的动力学将用于探测环的低位电子激发以及包含更复杂组件(例如约瑟夫森结、量子点、纳米线或石墨烯)的环。持续电流直接探测电子-电子相互作用以及耗散环境对电子系统的影响。这些主题对于我们理解固态系统中的多体物理和量子信息处理至关重要。因此,对持续电流的结论性实验研究将引起广泛领域的兴趣。从事该项目的学生和博士后将成为低噪声测量、低温学、微制造和微加工、真空和光学技术方面的专家。他们将为在未来的科学队伍中占据一席之地做好充分准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jack Harris其他文献
Measurements of Landau-level crossings and extended states in magnetic two-dimensional electron gases
磁性二维电子气中朗道能级交叉和扩展态的测量
- DOI:
10.1103/physrevb.65.235327 - 发表时间:
2001 - 期刊:
- 影响因子:3.7
- 作者:
R. Knobel;N. Samarth;Jack Harris;D. Awschalom - 通讯作者:
D. Awschalom
Spin-exchange collisions of submerged shell atoms below 1 Kelvin.
低于 1 开尔文的水下壳层原子的自旋交换碰撞。
- DOI:
10.1103/physrevlett.99.223201 - 发表时间:
2007 - 期刊:
- 影响因子:8.6
- 作者:
Jack Harris;Scott V. Nguyen;S. C. Doret;W. Ketterle;John M. Doyle - 通讯作者:
John M. Doyle
Visual Based Reference for Enhanced Audio-Video Source Extraction
用于增强音频-视频源提取的基于视觉的参考
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jack Harris;N. Mohsen;B. Rivet;J. Chambers;C. Jutten - 通讯作者:
C. Jutten
Primate archaeology
灵长类动物考古学
- DOI:
10.1038/nature08188 - 发表时间:
2009-07-16 - 期刊:
- 影响因子:48.500
- 作者:
Michael Haslam;Adriana Hernandez-Aguilar;Victoria Ling;Susana Carvalho;Ignacio de la Torre;April DeStefano;Andrew Du;Bruce Hardy;Jack Harris;Linda Marchant;Tetsuro Matsuzawa;William McGrew;Julio Mercader;Rafael Mora;Michael Petraglia;Hélène Roche;Elisabetta Visalberghi;Rebecca Warren - 通讯作者:
Rebecca Warren
We are the benchmark for others’ Dr. Jack Harris Installed as ADA’s 129th President
- DOI:
10.14219/jada.archive.1992.0315 - 发表时间:
1992-12-01 - 期刊:
- 影响因子:
- 作者:
Jack Harris - 通讯作者:
Jack Harris
Jack Harris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jack Harris', 18)}}的其他基金
New regimes of quantum optomechanics using superfluid-filled cavities
使用超流体填充腔的量子光力学新机制
- 批准号:
1707703 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Experimental Studies of Persistent Currents in Normal Metals
普通金属中持续电流的实验研究
- 批准号:
1106110 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
2008 Mechanical Systems in the Quantum Regime Gordon Research Conference
2008 年量子体系中的机械系统戈登研究会议
- 批准号:
0755108 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Cavity Quantum Optics with Radiation Pressure
辐射压腔量子光学
- 批准号:
0555824 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Renovation of Space for Research and Research Training of Women
女性研究和研究培训空间的翻新
- 批准号:
9415046 - 财政年份:1995
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Experimental Determination and Fundamental Theory of Mesoscopic Transport and Intrinsic Kinetics in CO2 Electrocatalysis
职业:二氧化碳电催化中介观输运和本征动力学的实验测定和基础理论
- 批准号:
2339693 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
AI enhanced lifetime-based mesoscopic in vivo imaging of tissue molecular heterogeneity
人工智能增强了基于寿命的组织分子异质性细观体内成像
- 批准号:
10585510 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304852 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304854 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304853 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Mesoscopic physics of the slip between solid and liquid
固体和液体之间滑移的介观物理
- 批准号:
23H01346 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
High-Resolution Bidirectional Optical-Acoustic Mesoscopic Neural Interface for Image-Guided Neuromodulation in Behaving Animals - RF1 Admin Supplement
用于行为动物图像引导神经调节的高分辨率双向光声介观神经接口 - RF1 管理补充
- 批准号:
10712937 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Mesoscopic electric field predictions and specimen shape measurements to improve reconstruction in atom probe tomography
介观电场预测和样品形状测量可改善原子探针断层扫描的重建
- 批准号:
2825214 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Studentship
Optimization, Application, and Dissemination of Imaging Modules for High-speed Mesoscopic Volumetric Recording of Neuroactivity in Scattering Brains
散射脑神经活动高速介观体积记录成像模块的优化、应用和传播
- 批准号:
10657354 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别: