OP: Full Temporal Characterization of Interacting Photon Wavefunctions Using Real-Time Multi-Mode Quantum Measurements

OP:使用实时多模量子测量对相互作用光子波函数进行全时间表征

基本信息

  • 批准号:
    1707919
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

The field of quantum information science is rapidly advancing because of the anticipated impacts that will come from new quantum technologies such as secure communication protocols, improved measurement systems, and revolutionary computing methods. Many of these technologies require nonlinear optical phenomena and sources of correlated light quanta, or photons. This project will pioneer new ways to generate and characterize complex quantum states of light. One aim is to use optical cavities surrounding a sample of cold atoms in order to enhance the way one light beam can control the phase shift for another light beam. A second aim is to use a graphical processor unit (GPU) for real-time characterization of quantum states of light. This will serve as a benchmarking tool for quantum networks, and allow on-the-fly tuning of operational parameters in sophisticated networks of quantum gates and memories. Developing tools for real-time characterization of quantum networks trains students working on this project to use cutting-edge technologies from computer engineering, atomic physics, and photonics.This research has three main thrusts. First, the deployment of different novel physical platforms in which single-photon level quantum nonlinearities can be observed. Second, the design and implementation of state-of-the-art characterization tools that make it possible to explore the quantum process tomography of the gate processes in an extended Hilbert space. Third, the realization of experiments to develop reliable quantum gate operations with single photon fields. An overarching goal of this project is to understand the physics governing atom-mediated photon-photon interactions in a framework with multiple optical frequency modes. To study the performance of quantum phase gates, the team will use GPU hardware to develop quantum state evaluation tools. This approach will also enable real-time characterization of phase-shift operations using interacting photons.
量子信息科学领域正在迅速发展,因为新的量子技术将带来预期的影响,如安全通信协议、改进的测量系统和革命性的计算方法。许多这些技术需要非线性光学现象和相关光量子或光子的来源。该项目将开拓新的方法来产生和表征复杂的光量子态。其中一个目标是使用围绕冷原子样品的光学腔,以增强一束光控制另一束光的相移的方式。第二个目标是使用图形处理器单元(GPU)来实时表征光的量子态。这将作为量子网络的基准测试工具,并允许在量子门和存储器的复杂网络中动态调整操作参数。开发实时表征量子网络的工具,训练从事该项目的学生使用计算机工程、原子物理学和光子学的尖端技术。这项研究主要有三个重点。首先,部署不同的新型物理平台,其中可以观察到单光子水平的量子非线性。其次,设计和实现最先进的表征工具,使探索扩展希尔伯特空间中门过程的量子过程层析成像成为可能。第三,通过实验实现开发可靠的单光子场量子门操作。该项目的首要目标是了解在多光频率模式框架中控制原子介导的光子-光子相互作用的物理。为了研究量子相门的性能,该团队将使用GPU硬件开发量子态评估工具。这种方法还可以利用相互作用的光子实现相移操作的实时表征。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast camera spatial characterization of photonic polarization entanglement
  • DOI:
    10.1038/s41598-020-62020-z
  • 发表时间:
    2020-04-10
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Ianzano, Christopher;Svihra, Peter;Figueroa, Eden
  • 通讯作者:
    Figueroa, Eden
Entanglement generation in a quantum network with finite quantum memory lifetime
  • DOI:
    10.1116/5.0082239
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Semenenko;Xuedong Hu;E. Figueroa;V. Perebeinos
  • 通讯作者:
    V. Semenenko;Xuedong Hu;E. Figueroa;V. Perebeinos
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eden Figueroa其他文献

The potential and global outlook of integrated photonics for quantum technologies
  • DOI:
    doi.org/10.1038/s42254-021-00398-z
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    38.5
  • 作者:
    Emanuele Pelucchi;Giorgos Fagas;Igor Aharonovich;Dirk Englund;Eden Figueroa;Qihuang Gong;Hübel Hannes;Jin Liu;Chao-Yang Lu;Nobuyuki Matsuda;Jian-Wei Pan;Florian Schreck;Fabio Sciarrino;Christine Silberhorn;Jianwei Wang;Klaus D. Jöns
  • 通讯作者:
    Klaus D. Jöns
Toward High-Efficiency Quantum Transduction between Superconducting Circuits and Cold-Atom Clouds
实现超导电路和冷原子云之间的高效量子传导

Eden Figueroa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eden Figueroa', 18)}}的其他基金

QLCI-CG: Center for a Quantum-Engineered Distributed Computing and Communication Testbed
QLCI-CG:量子工程分布式计算和通信测试台中心
  • 批准号:
    1936948
  • 财政年份:
    2019
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
I-Corps: Quantum hardware package for fully-secure long-distance data transfer
I-Corps:用于完全安全的长距离数据传输的量子硬件包
  • 批准号:
    1811244
  • 财政年份:
    2018
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Full Characterization of a Cavity Electromagnetically Induced Transparency Based Quantum Gate
腔体电磁感应透明量子门的全面表征
  • 批准号:
    1404398
  • 财政年份:
    2014
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant

相似国自然基金

钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
  • 批准号:
    51871067
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Human-Robot Co-Evolution: Achieving the full potential of future workplaces
人机协同进化:充分发挥未来工作场所的潜力
  • 批准号:
    DP240100938
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Discovery Projects
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
  • 批准号:
    EP/Y035976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
  • 批准号:
    2338371
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CAREER: From Flamelet to Full-Scale: Advancing Plasma-Assisted Combustion for Low-Emission Sustainable Fuels
职业生涯:从小火焰到全面:推进低排放可持续燃料的等离子体辅助燃烧
  • 批准号:
    2339518
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
STTR Phase II: Dermatologist-level detection of suspicious pigmented skin lesions from high-resolution full-body images
STTR II 期:通过高分辨率全身图像对可疑色素性皮肤病变进行皮肤科医生级别的检测
  • 批准号:
    2335086
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Cooperative Agreement
Toward carbon-neutral society: Development of a full-sustainable eco-friendly green mining process for gold recovery
迈向碳中和社会:开发完全可持续的环保绿色采矿工艺以回收黄金
  • 批准号:
    24K17540
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
All Analogue Full-duplex Dual-receiver Radio for Wideband Mm-wave Communications
用于宽带毫米波通信的全模拟全双工双接收器无线电
  • 批准号:
    EP/X041581/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grant
Full mitigation of birefringence for high-precision optical experiments
完全缓解双折射,实现高精度光学实验
  • 批准号:
    24K00649
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了