Topology, Singularities and Emulation in a Spinor BEC

旋量 BEC 中的拓扑、奇点和仿真

基本信息

  • 批准号:
    1708008
  • 负责人:
  • 金额:
    $ 31.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

A frontier of modern physics involves the manipulation and study of atoms cooled and trapped with temperatures near zero degrees Kelvin. Dilute samples of cold atoms have been used to realize high-performance atomic clocks and deBroglie wave gyroscopes as well as to model novel quantum materials. This project is based on the use of such ultracold quantum-atomic vapors to simulate and emulate problems from a range of subfields of physics. The importance of this work includes contributions to the general progress of science and specifically to our understanding of the quantum world. A key impact is expected to be the creation of knowledge useful for the development of quantum technologies and understanding of novel materials. Of equal importance is that the research will be central to the training of the next generation of scientists, many of whom will form the taskforce that is necessary to develop these new technologies.The project team uses carefully prepared laser pulses to manipulate a quantum degenerate gas of rubidium in such a way that its subsequent behavior models physical phenomena important to problems in other areas such as materials science and nuclear spin resonance (the phenomena at the heart of technologies such as MRI). The project rests on a series of studies related to this goal that build on the group's experience with imprinting spin and orbital angular momentum structures on a spinor Bose-Einstein condensate (BEC). Specifically the group will investigate the creation, stability and excitations of an array of non-trivial topological excitations (coreless vortices such as Skyrmions, Alice strings, phase states, etc.); to use a recently realized full Bloch BEC to gain access to a topological phase, the Gouy phase; to realize and investigate point-like defects in a spinor BEC such as the cross dis-gyration texture. The proposed work shares a common platform of experimental techniques, many of which are well developed by the group, and a common theoretical framework.
现代物理学的一个前沿领域涉及操纵和研究在零开氏度附近冷却和捕获的原子。冷原子的稀释样品已被用于实现高性能的原子钟和德布罗意波陀螺仪,以及模拟新的量子材料。这个项目是基于使用这种超冷量子原子蒸气来模拟和仿真物理学一系列子领域的问题。这项工作的重要性包括对科学的总体进步,特别是对我们理解量子世界的贡献。预计一个关键的影响是创造对量子技术的发展和对新材料的理解有用的知识。同样重要的是,这项研究将成为培养下一代科学家的核心,他们中的许多人将组成开发这些新技术所必需的特别小组。该项目小组使用精心准备的激光脉冲来操纵铷的量子简并气体,其随后的行为模拟了对材料科学和核自旋等其他领域的问题很重要的物理现象共振(MRI等技术的核心现象)。该项目依赖于与这一目标相关的一系列研究,这些研究建立在该小组在旋量玻色-爱因斯坦凝聚体(BEC)上压印自旋和轨道角动量结构的经验基础上。 具体来说,该小组将调查的创建,稳定性和激励的一系列非平凡的拓扑激励(无芯涡,如Skyrmions,爱丽丝弦,相态等);利用最近实现的全Bloch BEC获得对拓扑相Gouy相的访问;实现并研究旋量BEC中的点状缺陷,例如交叉反旋织构。拟议的工作共享一个共同的实验技术平台,其中许多是由该小组开发的,以及一个共同的理论框架。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Imprinting knots in a spinor Bose-Einstein condensate via a Raman process without knotted optical fields
通过拉曼过程在旋量玻色-爱因斯坦凝聚中压印结,无需打结光场
  • DOI:
    10.1103/physrevresearch.4.043109
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Chen, Zekai;Haber, Elisha;Bigelow, Nicholas P.
  • 通讯作者:
    Bigelow, Nicholas P.
Imprinting a Three-Dimensional Skyrmion in a Bose–Einstein Condensate Via a Raman Process
通过拉曼过程在玻色爱因斯坦凝聚中印记三维斯格明子
  • DOI:
    10.1007/s10909-022-02724-w
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Chen, Zekai;Hu, S. X.;Bigelow, Nicholas P.
  • 通讯作者:
    Bigelow, Nicholas P.
Momentum dependent optical lattice induced by an artificial gauge potential
  • DOI:
    10.1103/physrevresearch.4.013124
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Zekai Chen;Hepeng Yao;E. Haber;N. Bigelow
  • 通讯作者:
    Zekai Chen;Hepeng Yao;E. Haber;N. Bigelow
Roadmap on structured light
  • DOI:
    10.1088/2040-8978/19/1/013001
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Rubinsztein-Dunlop, Halina;Forbes, Andrew;Weiner, Andrew M.
  • 通讯作者:
    Weiner, Andrew M.
SU(2) geometric phase induced by a periodically driven Raman process in an ultracold dilute Bose gas
超冷稀玻色气体中周期性驱动拉曼过程引起的 SU(2) 几何相位
  • DOI:
    10.1103/physreva.101.013606
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Chen, Zekai;Murphree, Joseph D.;Bigelow, Nicholas P.
  • 通讯作者:
    Bigelow, Nicholas P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Bigelow其他文献

Spins mixed up
旋转混乱
  • DOI:
    10.1038/nphys163
  • 发表时间:
    2005-11-01
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Nicholas Bigelow
  • 通讯作者:
    Nicholas Bigelow

Nicholas Bigelow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Bigelow', 18)}}的其他基金

NUE: Development of Multidisciplinary Nanotechnology Undergraduate Education Program at the University of Rochester Integrated Nanosystems Center
NUE:罗切斯特大学综合纳米系统中心多学科纳米技术本科教育项目的发展
  • 批准号:
    1343673
  • 财政年份:
    2014
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
Manipulating a Spinor BEC
操纵旋量 BEC
  • 批准号:
    1313539
  • 财政年份:
    2013
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Continuing Grant
SCIART: Science and Preservation of the Daguerreotype
SCIART:银版照片的科学与保存
  • 批准号:
    1041811
  • 财政年份:
    2010
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Continuing Grant
Ultracold Polar Molecules
超冷极性分子
  • 批准号:
    0705204
  • 财政年份:
    2007
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Continuing Grant
ITR: Quantum Information and Communication Using Massive Etanglement of Collective Variables
ITR:利用集体变量的大规模纠缠的量子信息和通信
  • 批准号:
    0312791
  • 财政年份:
    2003
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Continuing Grant
NIRT: Next Generation Atom Chips for Quantum Information Technology
NIRT:用于量子信息技术的下一代原子芯片
  • 批准号:
    0210742
  • 财政年份:
    2002
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Continuing Grant
Ultracold Heteronuclear Mixtures
超冷异核混合物
  • 批准号:
    0071336
  • 财政年份:
    2000
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Production and Investigation of a Dense Gas of Laser Cooled Helium Atoms
美法合作研究:激光冷却氦原子致密气体的生产和研究
  • 批准号:
    9512926
  • 财政年份:
    1996
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
NSF Young Investigator
NSF 青年研究员
  • 批准号:
    9457897
  • 财政年份:
    1994
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
  • 批准号:
    2422557
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
  • 批准号:
    DP240101934
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Discovery Projects
Conference: Singularities in Ann Arbor
会议:安娜堡的奇点
  • 批准号:
    2401041
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
  • 批准号:
    2907441
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Studentship
Interaction of singularities and number theory
奇点与数论的相互作用
  • 批准号:
    23H01070
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Automatic classification and recognition of singularities and its application
奇点自动分类识别及其应用
  • 批准号:
    23K03123
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
  • 批准号:
    23K03138
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis on delta function type singularities in nonlinear heat equations
非线性热方程中δ函数型奇点分析
  • 批准号:
    23K03161
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
  • 批准号:
    EP/X01276X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Fellowship
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了