EAGER: Enhancing the Radical Scavenging Activity of Oxide Nanoparticles Beyond the Current Limits - an Unconventional Solution through Multidisciplinary Science
EAGER:将氧化物纳米颗粒的自由基清除活性增强到超越当前极限——通过多学科科学的非常规解决方案
基本信息
- 批准号:1708057
- 负责人:
- 金额:$ 9.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1708057EAGER: Enhancing the Radical Scavenging Activity of Oxide Nanoparticles Beyond the Current Limits - an Unconventional Solution through Multidisciplinary ScienceReactive oxygen species are formed as a natural byproduct of normal metabolism in biological systems. Their levels can increase dramatically during times of environmental stress such as sun's ultraviolet light, ionizing radiation, exposure to toxic chemicals, atmospheric pollutants, and inflammation. The imbalance between the production of reactive oxygen species and their removal by antioxidants results in a net accumulation of these species in the body, leading to the destruction of the cells and can cause a range of disorders such as cancer, Parkinson's disease, Alzheimer's disease, heart failure, stroke, autism, vitiligo, and depression. Engineered oxide nanoparticles have been shown to possess antioxidant activity and the ability to effectively regulate and scavenge a variety of reactive oxygen species. Despite many successes in the field, new breakthroughs are still needed to develop safer and more effective therapeutic nanoparticles. This research project seeks to establish a new approach toward the design and engineering of nanoparticles with high efficacy for trapping the reactive oxygen species in biological systems. The outcome of this project will allow researchers to further expand the family of nanoparticles used for the prevention and treatment of various types of diseases, and will ultimately impact society's health status and well-being. Besides the immediate impact of this research on the use of nanoparticles for therapeutic applications, the proposed scientific concept has the potential to lead to the discovery of highly responsive and selective nanoparticles for emerging applications such as real time selective biosensors, engineered plant functions for solar energy harvesting, and non-degradable polymeric membranes for low-emission vehicles. Cerium oxide (ceria) nanoparticles have demonstrated the potential to actively scavenge a variety of reactive oxygen species in cell and animal models. The capacity of ceria nanoparticles to scavenge free radicals is strongly related to the exposed particle surfaces and considerably constrained by the limited number of oxygen vacancies on the surface. While the relatively immobile lattice vacancies in the core of particles do not contribute to the observed scavenging capacity of ceria nanoparticles, it may be possible to access these vacancies to regenerate the consumed oxygen vacancies on the surface to enhance the scavenging activity. In this Early Grant for Exploratory Research (EAGER) project, an unconventional approach, based on the principles of oxygen vacancy migration in the field of solid state ionics, will be applied to explore fundamental relationships between lattice ion mobility and the surface scavenging activity of nanoparticles. The specific objective of the proposed research is to explore the scavenging properties of barium cerate nanoparticles in comparison with ceria nanoparticles in order to compare two compounds with similar transition metal cations (cerium), but with significantly different oxygen-ion mobilities. Utilizing lattice vacancies and continuous regeneration of surface oxygen vacancies to enhance the scavenging activity of nanoparticles is an entirely new concept to advance the field in novel and unexplored ways. A multidisciplinary team will synthesize and characterize oxide nanoparticles, and will evaluate the scavenging activity and redox-induced surface changes of the nanoparticles using spectroscopic and electrochemical techniques.
1708057EAGER:增强氧化物纳米颗粒的自由基清除活性,超越当前的限制--通过多学科科学的非传统解决方案活性氧物种是生物系统正常新陈代谢的天然副产品。在环境压力时期,如太阳紫外线、电离辐射、暴露于有毒化学物质、大气污染物和炎症,它们的水平可能会急剧上升。活性氧的产生和抗氧化剂清除活性氧之间的不平衡会导致这些物种在体内的净积累,导致细胞的破坏,并可能导致一系列疾病,如癌症、帕金森氏症、阿尔茨海默病、心力衰竭、中风、自闭症、白癜风和抑郁症。工程氧化物纳米颗粒已被证明具有抗氧化活性,并能够有效地调节和清除各种活性氧物种。尽管该领域取得了许多成功,但仍需要新的突破来开发更安全、更有效的治疗纳米颗粒。这一研究项目旨在建立一种新的方法来设计和设计高效的纳米颗粒来捕获生物系统中的活性氧物种。该项目的成果将使研究人员能够进一步扩大用于预防和治疗各种疾病的纳米颗粒家族,并最终影响社会的健康状况和福祉。除了这项研究对纳米颗粒用于治疗应用的直接影响外,拟议的科学概念还有可能导致发现高响应性和选择性的纳米颗粒,用于新兴应用,如实时选择性生物传感器、用于太阳能收集的工程植物功能,以及用于低排放车辆的不可降解聚合物膜。在细胞和动物模型中,CeO_2纳米颗粒已证明具有清除多种活性氧物种的潜力。CeO2纳米粒子清除自由基的能力与暴露的粒子表面密切相关,并受到表面有限数量的氧空位的很大限制。虽然粒子核心中相对固定的晶格空位对观察到的CeO2纳米颗粒的清除能力没有贡献,但有可能通过访问这些空位来再生表面消耗的氧空位,从而提高清除活性。在这个早期的探索性研究拨款项目中,一种基于固态离子领域中氧空位迁移原理的非传统方法将被应用于探索晶格离子迁移率与纳米颗粒表面清除活性之间的基本关系。这项研究的具体目标是通过与CeO_2纳米粒子的比较来探索BaCerate纳米粒子的清除性能,以便比较两种具有相似过渡金属阳离子(Ce)但氧离子迁移率显著不同的化合物。利用晶格空位和表面氧空位的连续再生来提高纳米粒子的清除活性是一种全新的概念,它以一种新颖的和未被探索的方式推动了这一领域的发展。一个多学科的团队将合成和表征氧化物纳米颗粒,并将使用光谱和电化学技术评估纳米颗粒的清除活性和氧化还原诱导的表面变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mona Shirpour其他文献
Titanate Anodes for Sodium Ion Batteries
- DOI:
10.1007/s10904-013-9977-8 - 发表时间:
2013-09-27 - 期刊:
- 影响因子:4.900
- 作者:
Marca M. Doeff;Jordi Cabana;Mona Shirpour - 通讯作者:
Mona Shirpour
Mona Shirpour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
- 批准号:
2401619 - 财政年份:2024
- 资助金额:
$ 9.39万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341858 - 财政年份:2024
- 资助金额:
$ 9.39万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341859 - 财政年份:2024
- 资助金额:
$ 9.39万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 9.39万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 9.39万 - 项目类别:
Standard Grant
RAPID: Enhancing WUI Fire Assessment through Comprehensive Data and High-Fidelity Simulation
RAPID:通过综合数据和高保真模拟增强 WUI 火灾评估
- 批准号:
2401876 - 财政年份:2024
- 资助金额:
$ 9.39万 - 项目类别:
Standard Grant
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
- 批准号:
2332082 - 财政年份:2024
- 资助金额:
$ 9.39万 - 项目类别:
Continuing Grant
CC* Networking Infrastructure: Enhancing network connectivity for data-intensive, multi-institution collaborative science
CC* 网络基础设施:增强数据密集型、多机构协作科学的网络连接
- 批准号:
2346718 - 财政年份:2024
- 资助金额:
$ 9.39万 - 项目类别:
Standard Grant
Partnerships for Enhancing ERI Research (PEER)
加强 ERI 研究的伙伴关系 (PEER)
- 批准号:
2347159 - 财政年份:2024
- 资助金额:
$ 9.39万 - 项目类别:
Standard Grant
REU Site: Enhancing Undergraduate Experiences in Data and Mobile Cloud Security
REU 网站:增强本科生在数据和移动云安全方面的经验
- 批准号:
2349233 - 财政年份:2024
- 资助金额:
$ 9.39万 - 项目类别:
Standard Grant