Grassmann Matrix Product States as a Tool for Ultracold-atom Model Systems
格拉斯曼矩阵产品状态作为超冷原子模型系统的工具
基本信息
- 批准号:1708049
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project involves basic research in computational physics at the interface between theoretical ultracold-atom physics and quantum-information theory. These are two very active areas of study, widely regarded as enablers for future quantum-based technologies, including quantum computation. The principal aim of the project is to further the development of variational algorithms for describing non-relativistic continuous model systems. These algorithms can be used to describe model systems of interacting cold-atom gases with mass-imbalance, including in the presence of optical lattices, and/or with mixtures of fermions and bosons. The research will be conducted in close collaboration with students and in an open manner. Broad dissemination is planned by including research-developed computational tools in graduate courses and by disseminating results in multiple venues, including to the general public. The latter will be done in collaboration with Cincinnati's Museum of Natural History and Science and involving students as part of their formative experience in science communication.The new continuum Matrix-Product States (cMPS) ansatz will be the main focus of attention in the proposed research. It constitutes the meeting of ideas coming from the theory of integrable systems and the tensor-network methods of quantum-information theory. Furthermore, cMPS brings in a new alternative to look at one-dimensional quantum field theories (QFTs) from a variational perspective. They provide valuable non-perturbative insights into the structure of strongly-coupled QFTs, whose fundamental nature permeates many different branches of physics. Developing these new theoretical and computational ideas in the context of quantum simulations using cold atoms will bring in an extra dimension of merit and add to the growing synergies between cold-atom experiments and many-body theories. In terms of computational infrastructure, the project will leverage the resources of the Ohio Supercomputing Center.
本项目涉及理论超冷原子物理与量子信息理论之间的计算物理基础研究。这是两个非常活跃的研究领域,被广泛认为是未来量子技术的推动者,包括量子计算。该项目的主要目的是进一步发展用于描述非相对论性连续模型系统的变分算法。这些算法可用于描述具有质量不平衡的冷原子气体相互作用的模型系统,包括存在光学晶格和/或费米子和玻色子的混合物。研究将以开放的方式与学生密切合作进行。通过将研究开发的计算工具纳入研究生课程,并通过在多个场所,包括向公众传播结果,计划进行广泛传播。后者将与辛辛那提自然历史与科学博物馆合作完成,并让学生参与其中,作为他们在科学传播方面形成经验的一部分。新的连续统矩阵积态(cMPS)分析将是研究的重点。它构成了来自可积系统理论和量子信息论的张量网络方法的思想的融合。此外,cMPS带来了从变分角度看待一维量子场论(QFTs)的新选择。它们为强耦合qft的结构提供了有价值的非微扰见解,强耦合qft的基本性质渗透到物理学的许多不同分支中。在使用冷原子的量子模拟背景下发展这些新的理论和计算思想将带来额外的优点,并增加冷原子实验和多体理论之间日益增长的协同作用。在计算基础设施方面,该项目将利用俄亥俄超级计算中心的资源。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum coherent states of interacting Bose-Fermi mixtures in one dimension
- DOI:10.1103/physrevresearch.4.l022034
- 发表时间:2021-10
- 期刊:
- 影响因子:4.2
- 作者:C. Peacock;Aleksandar Ljepoja;C. Bolech
- 通讯作者:C. Peacock;Aleksandar Ljepoja;C. Bolech
Derivation of matrix product states for the Heisenberg spin chain with open boundary conditions
具有开放边界条件的海森堡自旋链矩阵积态的推导
- DOI:10.1103/physreve.95.032127
- 发表时间:2017
- 期刊:
- 影响因子:2.4
- 作者:Mei, Zhongtao;Bolech, C. J.
- 通讯作者:Bolech, C. J.
Multiple phase separation in one-dimensional mixtures of mass- and population-imbalanced attractive Fermi gases
- DOI:10.1103/physreva.96.023609
- 发表时间:2016-12
- 期刊:
- 影响因子:2.9
- 作者:Sangwoo S. Chung;C. Bolech
- 通讯作者:Sangwoo S. Chung;C. Bolech
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Bolech其他文献
Carlos Bolech的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Matrix2000加速器的个性小数据在线挖掘
- 批准号:2020JJ4669
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
多模强激光场R-MATRIX-FLOQUET理论
- 批准号:19574020
- 批准年份:1995
- 资助金额:7.5 万元
- 项目类别:面上项目
相似海外基金
Development of human-derived extracellular matrix product using scaffold-free tissue-engineered cartilage
使用无支架组织工程软骨开发人源细胞外基质产品
- 批准号:
23K09099 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Matrix product state-based fermionic quantum emulator
SBIR 第一阶段:基于矩阵积状态的费米子量子模拟器
- 批准号:
2126857 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Numerical simulations of strongly entangled states: Sampling by matrix product states
强纠缠态的数值模拟:按矩阵积态采样
- 批准号:
20K14377 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Path Integrals Over Matrix Product States: Applications and Extensions
矩阵乘积状态的路径积分:应用程序和扩展
- 批准号:
2458698 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Studentship
Matrix product multi-variable polynomials from quantum algebras
量子代数的矩阵积多变量多项式
- 批准号:
DP190102897 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Discovery Projects
Efficient time evolution of quantum many-body systems in 2D with matrix product states
具有矩阵乘积状态的二维量子多体系统的高效时间演化
- 批准号:
299366262 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Research Units
Finite-Temperature Dynamics with Matrix Product State and Cluster Approaches
使用矩阵积状态和簇方法的有限温度动力学
- 批准号:
299367771 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Research Units
Matrix-product-state-based quantum impurity solvers
基于矩阵积态的量子杂质求解器
- 批准号:
228977595 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Research Units
Matrix Product States of Quantum Systems on Higher Dimensional Lattices
高维晶格上量子系统的矩阵积态
- 批准号:
24654042 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Matrix-Product-State Open Source Code and the Many Body Physics of Ultracold Molecules
矩阵积态开源代码和超冷分子的多体物理学
- 批准号:
1207881 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Standard Grant