Finite-Temperature Dynamics with Matrix Product State and Cluster Approaches

使用矩阵积状态和簇方法的有限温度动力学

基本信息

项目摘要

A variety of experimental probes is available for the investigation of dynamic susceptibilities. By indicating the allowed excitations of a system, these quantities often permit us to establish the properties of the quantum state. To do so, we however also need theoretical access to the spectra of appropriate effective low-energy models. The present proposal aims at extending the range of available numerical tools for this task. In particular, we plan to address finite temperatures in order to investigate signatures of ordered phases as opposed to disordered high-temperature states. Matrix Product State approaches (MPS) and cluster techniques like the Cluster Perturbation Theory (CPT) and the Variational Cluster Approximation (VCA) can be used to treat strongly correlated quantum systems at finite temperatures, but have so far mostly been applied to the ground state at T = 0. In this project, we plan to extend the range of applicability of both methods to treat spin and electron systems at finite temperatures in two-dimensional (2D) and quasi-2D geometries, to compare their predictive power, and to use MPS approaches at finite temperature as cluster solver. This will lead to cluster methods for 2D systems working at finite temperature and being more reliable since the results will be based on larger clusters. In particular we plan to focus on finite-temperature dynamical spectral functions, which are directly accessible via experiments like, e.g., neutron scattering, angle-resolved photo-electron spectroscopy (ARPES) or resonant inelastic X-ray scattering (RIXS). The goal is to predict signatures expected for spin or electron systems (e.g., iridate systems) in topologically nontrivial phases and to investigate them as they go through phase transitions from trivial to nontrivial states.
各种实验探头可用于动态磁化率的调查。通过指示系统的允许激发,这些量通常允许我们建立量子态的属性。然而,要做到这一点,我们还需要从理论上获得适当的有效低能模型的光谱。本建议旨在扩大这一任务可用的数字工具的范围。特别是,我们计划解决有限的温度,以调查签名的有序相,而不是无序的高温状态。矩阵乘积态方法(MPS)和簇技术(如簇微扰理论(CPT)和变分簇近似(VCA))可用于处理有限温度下的强关联量子系统,但迄今为止主要应用于T = 0的基态。在这个项目中,我们计划扩大这两种方法的适用范围,以处理自旋和电子系统在有限温度下的二维(2D)和准二维几何形状,比较它们的预测能力,并使用MPS方法在有限温度下作为集群求解器。这将导致用于在有限温度下工作的2D系统的聚类方法,并且由于结果将基于更大的聚类而更可靠。特别是,我们计划专注于有限温度动力学谱函数,这是直接通过实验,如,中子散射、角分辨光电子能谱(ARPES)或共振非弹性X射线散射(RIXS)。目标是预测自旋或电子系统预期的特征(例如,虹膜系统)在拓扑非平凡的阶段,并调查他们,因为他们通过从平凡到非平凡状态的相变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Maria Daghofer其他文献

Professorin Dr. Maria Daghofer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Maria Daghofer', 18)}}的其他基金

Spin-orbital entanglement and dynamic properties of spin-orbital systems
自旋轨道纠缠和自旋轨道系统的动力学性质
  • 批准号:
    153396866
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups

相似海外基金

Clarification of reaction-driven flows at high-temperature bimelt interfaces by electrochemical impedance spectroscopy and dynamics calculations
通过电化学阻抗谱和动力学计算澄清高温双熔体界面处的反应驱动流
  • 批准号:
    23H01737
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of dynamics of complex fluid droplet levitated on high temperature surface and their development into process intensification
阐明高温表面悬浮复杂液滴的动力学及其发展过程强化
  • 批准号:
    23K13592
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Developing serial crystallography for room temperature structure & dynamics
开发室温结构的系列晶体学
  • 批准号:
    FT220100405
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Thermo-dynamics analysis of bio-materials using 3D temperature imaging
使用 3D 温度成像对生物材料进行热力学分析
  • 批准号:
    23H01817
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Finite Temperature Simulation of Non-Markovian Quantum Dynamics in Condensed Phase using Quantum Computers
使用量子计算机对凝聚相非马尔可夫量子动力学进行有限温度模拟
  • 批准号:
    2320328
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Bismuth titanate-based high temperature piezoceramics: Domain structure and polarization dynamics
钛酸铋基高温压电陶瓷:磁畴结构和极化动力学
  • 批准号:
    22KF0290
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Arbovirus population biology: temperature impacts on selection and collective dynamics
虫媒病毒种群生物学:温度对选择和集体动态的影响
  • 批准号:
    10568405
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Room Temperature Protein Conformational Dynamics at Microsecond Timescales
微秒时间尺度的室温蛋白质构象动力学
  • 批准号:
    10715351
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Elucidation of the mechanism of TDP-43 dynamics regulated by intracellular temperature
阐明细胞内温度调节 TDP-43 动力学的机制
  • 批准号:
    23K18178
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Real-time structural dynamics analysis in protein crystal under controlled environmental conditions (temperature and pH).
在受控环境条件(温度和 pH 值)下蛋白质晶体的实时结构动力学分析。
  • 批准号:
    23H01780
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了