Geometric Aspects Knot and 3-manifold Invariants
几何方面结和 3 流形不变量
基本信息
- 批准号:1708249
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research in this NSF funded project lies in the area of three-dimensional topology, where the central objects of study are spaces called three-manifolds. A three-manifold is a space that locally looks like the ordinary three-dimensional space but whose global structure may be complicated. An important part of three-dimensional topology is also the study of knots, or in other words, loops embedded in some tangled way in three-manifolds. The solution of a well-known problem known as Thurston's Geometrization Conjecture has established that three-manifolds, and complements of knots in them, decompose into pieces that admit explicit geometries. One of the most common and most interesting geometries that appear in this setting is hyperbolic geometry. In practice, three-manifolds are often given in terms of combinatorial topological descriptions and it is both natural and important to seek for ways to deduce geometric information from these descriptions. One of the ways that topologists have been approaching the study of three-manifolds is through the construction and study of objects called invariants. In the last few decades, ideas that originated in quantum physics have led mathematicians to the discovery of a variety of subtle and powerful invariants of knots and three-manifolds. Understanding the connections of topological and combinatorial quantities and invariants to detailed geometric structures, arising from Thurston's picture, is a central and important goal of low dimensional topology. The main theme of this project is to establish such connections and to explore their ramifications and applications to topology as well as other areas of mathematics.The project aims to establish intrinsic connections between geometry and topological descriptions, properties, and quantum invariants of links and three-manifolds. One part of the project will continue the PI's study of the relations between Jones-type link polynomials, the topology of essential surfaces in link complements and hyperbolic geometry. Another part, will study the Turaev-Viro three-manifold invariants, their relations to other quantum invariants and the connections of their asymptotics to hyperbolic geometry. A third part will develop methods for recognizing geometric structures on three-manifolds from purely combinatorial input, and derive estimates on geometric quantities from topological data. A fourth part will study skein link theory in three-manifolds, its invariants, and its interaction with geometric decompositions of 3-manifolds. The project also involves research problems for graduate students currently working with the PI.
这个NSF资助的项目的研究方向是三维拓扑学,其中研究的中心对象是称为三维流形的空间。三维流形是一种局部看起来像普通三维空间但其整体结构可能复杂的空间。三维拓扑学的一个重要部分也是研究结,或者换句话说,以某种纠缠方式嵌入三维流形中的环。瑟斯顿几何化猜想(Thurston's Geometrization Conjecture)是一个著名的问题,它的解决方案已经确定了三流形和其中的结点的补数可以分解成允许明确几何的部分。在这种情况下出现的最常见和最有趣的几何之一是双曲几何。 在实践中,三维流形通常是以组合拓扑描述的形式给出的,从这些描述中寻找方法来推导几何信息是自然而重要的。拓扑学家研究三维流形的方法之一是通过构造和研究称为不变量的对象。在过去的几十年里,起源于量子物理学的思想使数学家们发现了纽结和三流形的各种微妙而强大的不变量。理解拓扑和组合量和不变量与详细几何结构的联系,源于瑟斯顿的图片,是低维拓扑学的核心和重要目标。本项目的主题是建立这种联系,并探索它们在拓扑学和其他数学领域的分支和应用。本项目旨在建立几何和拓扑描述之间的内在联系,链接和三维流形的性质和量子不变量。该项目的一部分将继续研究琼斯型链接多项式之间的关系,链接补充和双曲几何中的基本曲面拓扑。另一部分,将研究Turaev-Viro三流形不变量,它们与其他量子不变量的关系以及它们的渐近性与双曲几何的联系。第三部分将开发用于从纯组合输入识别三流形上的几何结构的方法,并从拓扑数据中获得几何量的估计。 第四部分将研究三流形中的绞链理论,它的不变量,以及它与三维流形的几何分解的相互作用。 该项目还涉及目前与PI合作的研究生的研究问题。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Strong Slope Conjecture and torus knot
强斜率猜想和环面结
- DOI:10.2969/jmsj/81068106
- 发表时间:2020
- 期刊:
- 影响因子:0.7
- 作者:Kalfagianni, Efstratia
- 通讯作者:Kalfagianni, Efstratia
Cosets of monodromies and quantum representations
单数陪集和量子表示
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:1.7
- 作者:Renaud Detcherry, Efstratia Kalfagianni
- 通讯作者:Renaud Detcherry, Efstratia Kalfagianni
Quantum representations and monodromies of fibered links.
光纤链路的量子表示和单一性。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:1.7
- 作者:Renaud Detcherry, Efstratia Kalfagianni
- 通讯作者:Renaud Detcherry, Efstratia Kalfagianni
Turaev-Viro invariants, colored Jones polynomial and volume.
Turaev-Viro 不变量、彩色琼斯多项式和体积。
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:1.1
- 作者:Renaud Detcherry, Efstratia Kalfagianni
- 通讯作者:Renaud Detcherry, Efstratia Kalfagianni
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Efstratia Kalfagianni其他文献
Higher degree knot adjacency as obstruction to fibering
较高程度的结邻接会阻碍纤维化
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Efstratia Kalfagianni;Xiaoxia Lin - 通讯作者:
Xiaoxia Lin
Constructions of $q$-hyperbolic knots
$q$-双曲结的构造
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Efstratia Kalfagianni;Joseph M. Melby - 通讯作者:
Joseph M. Melby
Cosmetic crossings and Seifert matrices
修饰交叉点和 Seifert 矩阵
- DOI:
10.4310/cag.2012.v20.n2.a1 - 发表时间:
2011 - 期刊:
- 影响因子:0.7
- 作者:
C. Balm;Stefan Friedl;Efstratia Kalfagianni;Mark Powell - 通讯作者:
Mark Powell
Remarks on Jones Slopes and Surfaces of Knots
- DOI:
10.1007/s40306-020-00400-3 - 发表时间:
2020-02 - 期刊:
- 影响因子:0.5
- 作者:
Efstratia Kalfagianni - 通讯作者:
Efstratia Kalfagianni
On knot adjacency
在结邻接处
- DOI:
10.1016/s0166-8641(02)00035-4 - 发表时间:
2002 - 期刊:
- 影响因子:0.6
- 作者:
N. Askitas;Efstratia Kalfagianni - 通讯作者:
Efstratia Kalfagianni
Efstratia Kalfagianni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Efstratia Kalfagianni', 18)}}的其他基金
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Geometric and Quantum Structures of 3-Manifolds
三流形的几何和量子结构
- 批准号:
2004155 - 财政年份:2020
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Geometric structures and invariants of links and 3-manifolds
链接和 3 流形的几何结构和不变量
- 批准号:
1404754 - 财政年份:2014
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Invariants and geometry of knots and 3-manifolds
结和 3 流形的不变量和几何
- 批准号:
1105843 - 财政年份:2011
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Hyperbolic Geometry and Jones Polynomials
合作研究:FRG:双曲几何和琼斯多项式
- 批准号:
0456155 - 财政年份:2005
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Knot and 3-manifold invariants and Dehn surgery
结和 3 流形不变量以及 Dehn 手术
- 批准号:
0306995 - 财政年份:2003
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Knot and 3-Manifold Invariants, Seifert Surfaces and Dehn Surgery
结和 3 流形不变量、Seifert 曲面和 Dehn 手术
- 批准号:
0104000 - 财政年份:2001
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds
数学科学:3-流形中的结和链接的不变量
- 批准号:
9996227 - 财政年份:1998
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds
数学科学:3-流形中的结和链接的不变量
- 批准号:
9626140 - 财政年份:1996
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
相似国自然基金
基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
- 批准号:60503032
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Research Grant
Combinational, Structural and algorithmic aspects of temporal graphs
时间图的组合、结构和算法方面
- 批准号:
2903280 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Studentship
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
- 批准号:
2340195 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Aspects and Functions of Legal Principles in Civil Law Interpretation
民法解释中法律原则的方面和作用
- 批准号:
23K01192 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Studentship
Various Aspects of the Mechanistic Views of Nature in the Late 19th Century
19世纪末自然机械论的各个方面
- 批准号:
23K00265 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Human, Engineering, and Scientific Aspects of Disease Transmission in Natural and Built Environments
会议:自然和建筑环境中疾病传播的人类、工程和科学方面
- 批准号:
2332366 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
AF: Small: Theoretical Aspects of Repetition-Aware Text Compression and Indexing
AF:小:重复感知文本压缩和索引的理论方面
- 批准号:
2315822 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant














{{item.name}}会员




