Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds

数学科学:3-流形中的结和链接的不变量

基本信息

  • 批准号:
    9996227
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-12-15 至 2001-08-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Efstratia Kalfagianni其他文献

Higher degree knot adjacency as obstruction to fibering
较高程度的结邻接会阻碍纤维化
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Efstratia Kalfagianni;Xiaoxia Lin
  • 通讯作者:
    Xiaoxia Lin
Constructions of $q$-hyperbolic knots
$q$-双曲结的构造
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Efstratia Kalfagianni;Joseph M. Melby
  • 通讯作者:
    Joseph M. Melby
Cosmetic crossings and Seifert matrices
修饰交叉点和 Seifert 矩阵
  • DOI:
    10.4310/cag.2012.v20.n2.a1
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    C. Balm;Stefan Friedl;Efstratia Kalfagianni;Mark Powell
  • 通讯作者:
    Mark Powell
Remarks on Jones Slopes and Surfaces of Knots
  • DOI:
    10.1007/s40306-020-00400-3
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Efstratia Kalfagianni
  • 通讯作者:
    Efstratia Kalfagianni
On knot adjacency
在结邻接处
  • DOI:
    10.1016/s0166-8641(02)00035-4
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    N. Askitas;Efstratia Kalfagianni
  • 通讯作者:
    Efstratia Kalfagianni

Efstratia Kalfagianni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Efstratia Kalfagianni', 18)}}的其他基金

Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
  • 批准号:
    2304033
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Geometric and Quantum Structures of 3-Manifolds
三流形的几何和量子结构
  • 批准号:
    2004155
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Geometric Aspects Knot and 3-manifold Invariants
几何方面结和 3 流形不变量
  • 批准号:
    1708249
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Geometric structures and invariants of links and 3-manifolds
链接和 3 流形的几何结构和不变量
  • 批准号:
    1404754
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Invariants and geometry of knots and 3-manifolds
结和 3 流形的不变量和几何
  • 批准号:
    1105843
  • 财政年份:
    2011
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Topics in 3-dimensional topology
3 维拓扑主题
  • 批准号:
    0805942
  • 财政年份:
    2008
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Hyperbolic Geometry and Jones Polynomials
合作研究:FRG:双曲几何和琼斯多项式
  • 批准号:
    0456155
  • 财政年份:
    2005
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Knot and 3-manifold invariants and Dehn surgery
结和 3 流形不变量以及 Dehn 手术
  • 批准号:
    0306995
  • 财政年份:
    2003
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Knot and 3-Manifold Invariants, Seifert Surfaces and Dehn Surgery
结和 3 流形不变量、Seifert 曲面和 Dehn 手术
  • 批准号:
    0104000
  • 财政年份:
    2001
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds
数学科学:3-流形中的结和链接的不变量
  • 批准号:
    9626140
  • 财政年份:
    1996
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    0196235
  • 财政年份:
    2000
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    9996368
  • 财政年份:
    1998
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    9704893
  • 财政年份:
    1997
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Knot Theory: New Invariants and TheirTopology
数学科学:纽结理论:新不变量及其拓扑
  • 批准号:
    9796130
  • 财政年份:
    1997
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds
数学科学:3-流形中的结和链接的不变量
  • 批准号:
    9626140
  • 财政年份:
    1996
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Holomorphic Invariants of 3-Manifolds
数学科学:3-流形的全纯不变量
  • 批准号:
    9626544
  • 财政年份:
    1996
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Low Dimensional Manifolds: Their Symmetries and Topological Invariants
数学科学:低维流形:它们的对称性和拓扑不变量
  • 批准号:
    9529310
  • 财政年份:
    1996
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Quantum and Finite Type Invariants of Links in 3-Manifolds, Quasicrystals
数学科学:3-流形、准晶体中链接的量子和有限型不变量
  • 批准号:
    9626404
  • 财政年份:
    1996
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Algebraic Geometry and Seiberg-Witten Invariants
数学科学:代数几何和 Seiberg-Witten 不变量
  • 批准号:
    9622681
  • 财政年份:
    1996
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topological Applications of Quantum 3-Manifold Invariants
数学科学:量子 3 流形不变量的拓扑应用
  • 批准号:
    9626818
  • 财政年份:
    1996
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了