Controlling Valley Polarization in 2D Heterostructures
控制二维异质结构中的谷极化
基本信息
- 批准号:1708562
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electronic information processing devices are currently based on controlling electron charge. However, traditional electronic device architectures are reaching fundamental energy loss and miniaturization limits, which motivate the investigation of transformative nanoscale devices. Electrons in a class of atomically thin two-dimensional semiconductors offer an electronic valley degree of freedom that can be used to encode and potentially process information. Electrons in these materials, specifically monolayer transition metal dichalcogenides, can occupy one of two different electronic valleys, which can be understood as distinguishable pockets in the electronic band structure. Because there are two valleys, they can be used to encode digital information as 1's and 0's. Importantly, excitation of these valleys creates neutral particle species that inherently incur lower energy losses than charged particles. In this project, the PIs will develop optical and electronic devices with the goal of controlling the valley degree of freedom for computing. They will design and fabricate novel electronic devices, which comprise disparate layers of ultra-thin materials, i.e. inorganic and hybrid inorganic-organic devices, which will allow for new valley dependent functionalities. Specifically, they will explore how electronic, magnetic and chemical interactions can be used to engineer spatial transport of charge neutral electronic states carrying valley information. The goal of the project is to understand how to control electronic valley information and to demonstrate valley-based logic gates. The project will advance the field of nanotechnology by demonstrating how valleys can be used in information processing technologies. The project develops new knowledge and trains a new generation of scientists in ultra-small optical and electronic devices that realize the fundamental small-sized limit (atomically thin), and could potentially enable low energy consumption devices that utilize valley instead of charge to encode information.This project focuses on the development of valley-based devices composed of two-dimensional heterostructures. Electrons in monolayer transition metal dichalcogenide (TMD) semiconductors (i.e. WSe2, MoSe2, etc.) can occupy one of two momentum space valleys (+K and +K), which can be used as a binary degree of freedom to encode and potentially process information. In analogy with spintronics, this project seeks to explore device architectures that will leverage the control of valley polarizations for applications to low energy consumption valleytronic information processing. Specifically, heterostructures that host charge-neutral interlayer excitons and can enable micron-scale spatial transport of valley polarized carriers will be explored. These structures will be developed into prototype and transformative valleytronic logic gates that are based on nonlinear valley-dependent interaction effects, and rely on optical injection and readout. The project has three specific aims: 1) controlling pure valley currents in MoSe2/WSe2 devices with interlayer excitons and field-effect structures; 2) controlling valley and ferromagnetic polarizations in ferromagnetic/TMD heterostructures using interfacial exchange-interactions; and 3) developing interlayer valley excitons in TMD/organic semiconductor heterostructures to enable a tunable interlayer exciton system, optical spin-injection, and chemically breaking of the TMD valley degeneracy. The PI and co-PI will utilize a combination of 2D material fabrication, organic semiconductor deposition and electron beam lithography techniques to fabricate the proposed devices. TMD/TMD and ferromagnetic/TMD devices will be investigated using spatially resolved micro-photoluminescence and nonlinear Kerr spectroscopies to probe the exciton energies and valley polarizations. The TMD/organic heterostructures will be characterized by angle-resolved photoemission and advanced x-ray spectroscopies. Valley polarized spatial transport effects will be read out optically, and will be controlled by applying gate voltages in field effect heterostructure devices, applying external magnetic fields, and patterning organic adsorbates. The project will develop novel inorganic and hybrid organic/inorganic devices that have potential to enable transformative technologies based on the electronic valley degree of freedom.
电子信息处理装置目前基于控制电子电荷。然而,传统的电子器件架构正在达到基本的能量损耗和小型化极限,这激发了对变革性纳米器件的研究。一类原子级薄的二维半导体中的电子提供了电子谷自由度,可用于编码和潜在处理信息。这些材料中的电子,特别是单层过渡金属二硫属化物,可以占据两个不同的电子谷之一,这可以被理解为电子能带结构中的可区分的口袋。因为有两个谷,所以它们可以用来将数字信息编码为1和0。重要的是,这些谷的激发产生中性粒子种类,其固有地引起比带电粒子更低的能量损失。在这个项目中,PI将开发光学和电子设备,目标是控制计算的谷自由度。他们将设计和制造新型电子器件,其中包括不同的超薄材料层,即无机和混合无机-有机器件,这将允许新的谷依赖功能。具体来说,他们将探索如何使用电子,磁性和化学相互作用来设计携带谷信息的电荷中性电子状态的空间传输。该项目的目标是了解如何控制电子谷信息和演示谷为基础的逻辑门。该项目将通过展示谷如何用于信息处理技术来推进纳米技术领域。该项目开发新知识,培养新一代的科学家,开发实现基本的小尺寸极限(原子厚度)的超小型光学和电子器件,并有可能实现利用谷而不是电荷编码信息的低能耗器件。本项目重点开发由二维异质结构组成的谷基器件。单层过渡金属二硫属化物(TMD)半导体(即WSe 2,MoSe 2等)中的电子可以占据两个动量空间谷(+K和+K)中的一个,其可以用作编码和潜在地处理信息的二进制自由度。与自旋电子学类似,该项目旨在探索将利用谷极化控制应用于低能耗谷电子信息处理的器件架构。具体而言,异质结构,主机电荷中性层间激子,并可以使谷极化载流子的微米级空间传输将被探索。这些结构将被开发成原型和变革性的谷电子逻辑门,其基于非线性谷相关相互作用效应,并依赖于光学注入和读出。该项目有三个具体目标:1)利用层间激子和场效应结构控制MoSe 2/WSe 2器件中的纯谷电流; 2)利用界面交换相互作用控制铁磁/TMD异质结构中的谷极化和铁磁极化;和3)在TMD/有机半导体异质结构中产生层间谷激子以实现可调谐的层间激子系统,光学自旋注入,TMD谷简并度的化学破坏。PI和co-PI将利用2D材料制造、有机半导体沉积和电子束光刻技术的组合来制造所提出的器件。TMD/TMD和铁磁/TMD器件将使用空间分辨的显微光致发光和非线性克尔光谱来探测激子能量和谷极化。TMD/有机异质结构将通过角分辨光电发射和先进的X射线光谱进行表征。谷极化空间输运效应将被光学读出,并且将通过在场效应异质结构器件中施加栅极电压、施加外部磁场和图案化有机吸附物来控制。该项目将开发新型无机和混合有机/无机器件,这些器件有可能实现基于电子谷自由度的变革性技术。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temperature dependent moire trapping of interlayer excitons in MoSe2-WSe2 heterostructures
- DOI:10.1038/s41699-021-00248-7
- 发表时间:2021-07-21
- 期刊:
- 影响因子:9.7
- 作者:Mahdikhanysarvejahany, Fateme;Shanks, Daniel N.;Schaibley, John R.
- 通讯作者:Schaibley, John R.
Coupled 2D Semiconductor–Molecular Excitons with Enhanced Raman Scattering
- DOI:10.1021/acs.jpcc.0c06544
- 发表时间:2020-12
- 期刊:
- 影响因子:3.7
- 作者:Christine Muccianti;Sara L. Zachritz;A. Garlant;C. Eads;Bekele H. Badada;Adam Alfrey;M. Koehler;D. Mandrus;R. Binder;B. LeRoy;O. Monti;J. Schaibley
- 通讯作者:Christine Muccianti;Sara L. Zachritz;A. Garlant;C. Eads;Bekele H. Badada;Adam Alfrey;M. Koehler;D. Mandrus;R. Binder;B. LeRoy;O. Monti;J. Schaibley
Nanoscale Trapping of Interlayer Excitons in a 2D Semiconductor Heterostructure
- DOI:10.1021/acs.nanolett.1c01215
- 发表时间:2021-06-24
- 期刊:
- 影响因子:10.8
- 作者:Shanks, Daniel N.;Mahdikhanysarvejahany, Fateme;Schaibley, John R.
- 通讯作者:Schaibley, John R.
2D semiconductor nonlinear plasmonic modulators
- DOI:10.1038/s41467-019-11186-w
- 发表时间:2019-07-22
- 期刊:
- 影响因子:16.6
- 作者:Klein, Matthew;Badada, Bekele H.;Schaibley, John R.
- 通讯作者:Schaibley, John R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Schaibley其他文献
A lucky break
一个幸运的突破
- DOI:
10.1038/nphys3138 - 发表时间:
2014-10-05 - 期刊:
- 影响因子:18.400
- 作者:
John Schaibley;Xiaodong Xu - 通讯作者:
Xiaodong Xu
John Schaibley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Schaibley', 18)}}的其他基金
Deterministic and tunable quantum dots based on bilayer semiconductor heterostructures
基于双层半导体异质结构的确定性可调量子点
- 批准号:
2054572 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Imaging and controlling moire interactions in two-dimensional semiconductor heterostructures
二维半导体异质结构中莫尔相互作用的成像和控制
- 批准号:
2003583 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
尼泊尔东北部Arun Valley榴辉岩岩石学研究
- 批准号:41972056
- 批准年份:2019
- 资助金额:67.0 万元
- 项目类别:面上项目
相似海外基金
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
- 批准号:
EP/Y021789/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Establishing an Inter-institutional San Fernando Valley Collaborative to Improve STEM Transfer Student Support, Retention, and Graduation
建立圣费尔南多谷机构间合作,以改善 STEM 转学生的支持、保留和毕业
- 批准号:
2322433 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CC* Regional Computing: CENVAL-ARC: Central Valley Accessible Research and Computational Hub
CC* 区域计算:CENVAL-ARC:中央谷无障碍研究和计算中心
- 批准号:
2346744 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Impact of Precipitation and Managed Aquifer Recharge on Post-Drought Groundwater Storage Recovery in California's Central Valley
降水和管理含水层补给对加州中央山谷干旱后地下水储存恢复的影响
- 批准号:
2331842 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
IUCRC Planning Grant University of Texas Rio Grande Valley: Center to Accelerate Recipe Development for Additive Manufacturing of Metals (CARDAMOM)
IUCRC 规划拨款德克萨斯大学里奥格兰德河谷:加速金属增材制造配方开发中心 (CARDAMOM)
- 批准号:
2333362 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
- 批准号:
EP/Y021339/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
C2H2 EAGER: Gadolinium Contamination in the Middle Rio Grande Valley: Understanding Environmental Fate and Human Exposure
C2H2 EAGER:里约格兰德河谷中部的钆污染:了解环境命运和人类暴露
- 批准号:
2422236 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Louis Stokes New STEM Pathways Implementation-Only Alliance: The Tennessee Valley Tri-State LSAMP Alliance-Creating a Pathway of Success for General STEM Education
Louis Stokes 新 STEM 途径实施联盟:田纳西河谷三州 LSAMP 联盟 - 为普通 STEM 教育创造成功之路
- 批准号:
2308688 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Carbon Capture Ready? – Developing a Toolkit for Industry to Enable Carbon Capture within Energy from Waste plants in the Tees Valley
碳捕获准备好了吗?
- 批准号:
10054164 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Launchpad
Battery Materials R&D Centre of Excellence, Tees Valley: Testing and selecting an innovative, low-carbon, lithium pyrometallurgy solution for deployment
电池材料研究
- 批准号:
10074864 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Launchpad