Totally Geodesic Subvarieties in the Moduli Space of Riemann Surfaces

黎曼曲面模空间中的全测地线子类型

基本信息

  • 批准号:
    1708705
  • 负责人:
  • 金额:
    $ 17.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

In this NSF funded research, the principal investigator seeks to address fundamental challenges in the study of dynamical systems in general, and trajectories of a ball moving in polygons in particular. Dynamical systems are mathematical objects which evolve in time, and they are ubiquitous in the applications of mathematics. Whenever mathematics is used to predict the future, e.g. to predict the weather, the stock market, or the behavior of particles in a solution, a dynamical system is involved. The dynamical systems in the real world, like those just mentioned, are often extraordinarily complex. The principal investigator will study a simple class of dynamical systems modeled on ideal billiards in polygons with a view towards understanding the complicated dynamical systems that occur in applications. The principal investigator will work to uncover and categorize the range of dynamical behaviors possible in billiard systems, and will continue his research exploring connections between billiards and the theory of numbers. In addition, the principal investigator will continue his educational, mentoring, and outreach activities to promote the broader impacts of his work. This project seeks to address fundamental challenges in the study of dynamics on Riemann surfaces and their moduli spaces. These subjects have connections with many areas of mathematics and important applications to the classification of mapping classes, the dynamics of rational maps and trajectories of a ball moving in polygons in polygons. Of particular importance are the special subvarieties of moduli space which are invariant under the geodesic flow. Such subvarieties are rare and their origins are mysterious. The principal investigator will pursue two lines of research. First, the principal investigator and his coauthors will give new constructions of special subvarieties. Second, the principal investigator will investigate connections between special subvarieties and number theory, with the particular goal of understanding the arithmetic geometry of these spaces.
在这项由美国国家科学基金会资助的研究中,首席研究员试图解决动力学系统研究中的基本挑战,特别是球在多边形中运动的轨迹。动力系统是随时间演化的数学对象,在数学应用中无处不在。当数学被用来预测未来时,例如预测天气、股市或溶液中粒子的行为,就涉及到一个动力系统。现实世界中的动力系统,就像刚才提到的那样,往往是非常复杂的。主要研究人员将研究一类以多边形理想台球为模型的简单动力系统,以期了解应用中出现的复杂动力系统。首席研究员将致力于发现和分类台球系统中可能的动力学行为范围,并将继续他的研究,探索台球和数论之间的联系。此外,首席调查员将继续他的教育、指导和外联活动,以促进他的工作产生更广泛的影响。这个项目致力于解决黎曼曲面及其模空间上的动力学研究中的基本挑战。这些学科与许多数学领域有关,并在映射类别的分类、有理映射的动力学以及球在多边形中运动的轨迹等方面有重要的应用。特别重要的是模空间的特殊子簇,它们在测地线流下是不变的。这样的亚种很罕见,它们的起源也是神秘的。首席调查员将从事两个方面的研究。首先,主要研究者和他的合著者将给出特殊亚簇的新构造。第二,主要研究人员将调查特殊亚簇和数论之间的联系,目的是了解这些空间的算术几何。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polynomials Defining Teichmüller Curves and Their Factorizations mod p
定义 Teichmüller 曲线的多项式及其因式分解 mod p
  • DOI:
    10.1080/10586458.2018.1488156
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Mukamel, Ronen E.
  • 通讯作者:
    Mukamel, Ronen E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ronen Mukamel其他文献

Ronen Mukamel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ronen Mukamel', 18)}}的其他基金

Totally Geodesic Subvarieties in the Moduli Space of Riemann Surfaces
黎曼曲面模空间中的全测地线子类型
  • 批准号:
    1939015
  • 财政年份:
    2019
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
CAREER: Totally Geodesic Varieties in Moduli Space: Arithmetic and Classification
职业:模空间中的完全测地线变体:算术和分类
  • 批准号:
    1847192
  • 财政年份:
    2019
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1103654
  • 财政年份:
    2011
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Fellowship Award

相似海外基金

Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
  • 批准号:
    DP240102350
  • 财政年份:
    2024
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Discovery Projects
Hyperbolic Manifolds, Geodesic Submanifolds, and Rigidity for Rank-1 Lattices
双曲流形、测地线子流形和 1 阶晶格的刚度
  • 批准号:
    2300370
  • 财政年份:
    2022
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
Geodesic Submanifolds, Rigidity, and Other New Phenomena in Rank 1
测地线子流形、刚度和其他 1 级新现象
  • 批准号:
    2203555
  • 财政年份:
    2022
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Continuing Grant
Study of vector fields and development of convex analysis on complete geodesic spaces
矢量场的研究和完全测地空间凸分析的发展
  • 批准号:
    21K03316
  • 财政年份:
    2021
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quasi-geodesic and other tilted observers in FLRW cosmology
FLRW 宇宙学中的准测地线和其他倾斜观测者
  • 批准号:
    562514-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 17.3万
  • 项目类别:
    University Undergraduate Student Research Awards
Geodesic Currents and Counting Problems
测地线流和计数问题
  • 批准号:
    EP/T015926/1
  • 财政年份:
    2020
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Research Grant
New Directions in Thermodynamic Formalism for Geodesic Flows Beyond the Closed Riemannian Case
超越封闭黎曼情况的测地流热力学形式主义的新方向
  • 批准号:
    1954463
  • 财政年份:
    2020
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
CDS&E: AST: Collaborative Research: Computational science in support of space missions: plasma turbulence modeling on geodesic meshes
CDS
  • 批准号:
    2009776
  • 财政年份:
    2020
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
CDS&E: AST: Collaborative Research: Computational science in support of space missions: plasma turbulence modeling on geodesic meshes
CDS
  • 批准号:
    2009871
  • 财政年份:
    2020
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
Fast Algorithms for Nonlinear Optimal Control of Geodesic Flows of Diffeomorphisms
微分同胚测地流非线性最优控制的快速算法
  • 批准号:
    2012825
  • 财政年份:
    2020
  • 资助金额:
    $ 17.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了