Collaborative Research: Adapting Cas9 Protein from CRISPR as a Structural Unit for Molecular Assembly
合作研究:将 CRISPR 中的 Cas9 蛋白改造为分子组装的结构单元
基本信息
- 批准号:1709527
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARY Even with very advanced lithographic techniques, it is difficult or impossible for human engineering to reach down and control matter in the low nanometer length-scale. However, biological systems utilize the ability of molecules to recognize and bind to one another for self-assembling very complex structures with feature sizes down in the nanometer range. Taking inspiration from the rich diversity of functional architectures observed in biology and making use of new discoveries in engineered biomaterials, this project will expand basic understanding of biomaterials and their programmable assembly. Successful completion of the research will, in the short-term, enable significant progress in nano-scale self-assembly using proteins and nucleic acids. In the long-term, this will provide the needed technology for implementation of ever-smaller devices for computing, communications, and sensing applications; implantable medical devices and biosensors; and programmable, artificial molecular machines. This project will provide training opportunities for postgraduate and postdoctoral students in cutting-edge molecular engineering and bionanotechnology. Using NSF?s supplemental funding mechanisms, high school and undergraduate students will be attracted to the project to participate research and to train in the emerging field of nanoscience. This project will expand our scientific understanding of nanometer-scale phenomena and materials as well as to improve our ability to design and engineer new functional materials on this length-scale. The results of this project could impact future application areas in the sustainable fabrication of electronic devices and new approaches to medical diagnostics and therapeutics. PART 2: TECHNICAL SUMMARY DNA?s capacity for highly reliable and programmable molecular recognition has led to the field of DNA-based nanotechnology, also known as structural DNA nanotechnology. Researchers in this field develop materials and techniques for DNA-guided molecular and nano-scale self-assembly and have made remarkable recent progress, including the ordering of matter with unprecedented precision and parallelism, nano-scale organization of proteins and metal particles, as well as fascinating demonstrations of artificial molecular machines. One problem that has limited DNA nanotech?s translation from prototype demonstrations to commercially viable applications has been the lack of a general purpose, rapidly-reprogrammable method for functionalizing DNA structures with polypeptides. The Cas9 protein from the CRISPR RNA-directed bacterial immune system is used here as a novel solution to this problem. Cas9 is a programmable protein that acts as an endonuclease for cleaving non-self nucleic acid targets. In an engineered form, dCas9 has been mutated to bind a DNA sequence (specified by an RNA molecule) without cleavage of the targeted DNA. The dCas9 protein, guide RNA, and its target DNA sequences are well understood, modular, and programmable. Consequently, dCas9 is perfect for use in the development of a new family of molecular assembly tools with designed sequence specificities and the ability to act as a new smart glue for the programmed assembly of other nanomaterials including protein enzymes, affinity peptides, inorganic nanoparticles, and carbon nanotubes. The overarching goal of the project is to add the programmable recognition and binding functions of dCas9 to the growing toolbox of materials and methods available to DNA-based nanotech. Specifically, the project seeks to develop fusion proteins bearing mutant Cas9 domains to organize other polypeptides (including ligands, in vitro selected affinity peptides, enzymes, and inhibitors) on DNA nanostructures in programmed patterns for biomedical applications as well as in the bionanofabrication of electronic and photonic devices.
即使有非常先进的光刻技术,人类工程也很难或不可能到达和控制低纳米长度尺度的物质。然而,生物系统利用分子识别和相互结合的能力来自组装非常复杂的结构,其特征尺寸在纳米范围内。从生物学中观察到的丰富多样的功能结构中获得灵感,并利用工程生物材料的新发现,该项目将扩大对生物材料及其可编程组装的基本了解。在短期内,这项研究的成功完成将使利用蛋白质和核酸的纳米级自组装取得重大进展。从长远来看,这将为实现越来越小的计算、通信和传感应用设备提供所需的技术;植入式医疗装置和生物传感器;以及可编程的人工分子机器。该项目将为前沿分子工程和生物纳米技术的研究生和博士后提供培训机会。使用NSF ?根据美国的补充资助机制,该项目将吸引高中生和本科生参与纳米科学新兴领域的研究和培训。这个项目将扩大我们对纳米尺度现象和材料的科学理解,并提高我们在这种长度尺度上设计和制造新功能材料的能力。该项目的结果可能会影响电子设备可持续制造和医疗诊断和治疗新方法的未来应用领域。第2部分:技术摘要dna ?基于DNA的纳米技术,也被称为结构DNA纳米技术。该领域的研究人员开发了dna引导分子和纳米级自组装的材料和技术,并取得了显着的进展,包括以前所未有的精度和并行性排列物质,纳米级组织蛋白质和金属颗粒,以及人工分子机器的迷人演示。限制DNA纳米技术的一个问题是什么?从原型演示到商业上可行的应用的转变一直缺乏一种通用的、快速可编程的方法来用多肽功能化DNA结构。来自CRISPR rna导向的细菌免疫系统的Cas9蛋白在这里被用作解决这个问题的新方法。Cas9是一种可编程蛋白,作为一种核酸内切酶,用于切割非自核酸靶标。在一种工程形式中,dCas9已经发生突变,可以结合DNA序列(由RNA分子指定),而不会切割目标DNA。dCas9蛋白、引导RNA及其靶DNA序列已被很好地理解、模块化和可编程。因此,dCas9非常适合用于开发具有设计序列特异性的新分子组装工具家族,并且能够作为一种新的智能胶,用于其他纳米材料的程序化组装,包括蛋白酶、亲和肽、无机纳米颗粒和碳纳米管。该项目的总体目标是将dCas9的可编程识别和结合功能添加到基于dna的纳米技术可用的材料和方法的不断增长的工具箱中。具体来说,该项目旨在开发携带突变Cas9结构域的融合蛋白,以编程模式在DNA纳米结构上组织其他多肽(包括配体、体外选择的亲和肽、酶和抑制剂),用于生物医学应用以及电子和光子器件的生物纳米制造。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Increasing the specificity of CRISPR systems with engineered RNA secondary structures
- DOI:10.1038/s41587-019-0095-1
- 发表时间:2019-06-01
- 期刊:
- 影响因子:46.9
- 作者:Kocak, D. Dewran;Josephs, Eric A.;Gersbach, Charles A.
- 通讯作者:Gersbach, Charles A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Gersbach其他文献
Charles Gersbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Gersbach', 18)}}的其他基金
EFRI CEE : Engineering Technologies to Determine Causal Relationships Between Chromatin Structure and Gene Regulation
EFRI CEE:确定染色质结构与基因调控之间因果关系的工程技术
- 批准号:
1830957 - 财政年份:2018
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
CAREER: Photoregulated Gene Expression for Spatiotemporal Control of Morphogenesis
职业:光调控基因表达用于形态发生的时空控制
- 批准号:
1151035 - 财政年份:2012
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NNA Research: Developing capacity for planning and adapting to riverbank erosion and its consequences in the Yukon River Basin
合作研究:NNA 研究:发展规划和适应育空河流域河岸侵蚀及其后果的能力
- 批准号:
2127443 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: NNA Research: Developing capacity for planning and adapting to riverbank erosion and its consequences in the Yukon River Basin
合作研究:NNA 研究:发展规划和适应育空河流域河岸侵蚀及其后果的能力
- 批准号:
2127444 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Sustainable Water Infrastructure for Adapting to Coastal Climate Change
合作研究:适应沿海气候变化的可持续水基础设施
- 批准号:
2113984 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Sustainable Water Infrastructure for Adapting to Coastal Climate Change
合作研究:适应沿海气候变化的可持续水基础设施
- 批准号:
2113987 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
IRES Track III: Collaborative Research: Coupling Participatory and Hydrological Research for Adapting to Extreme Hydrometeorological Events in Agricultural Communities, El Salvador
IRES 轨道 III:合作研究:将参与性研究与水文研究相结合,以适应萨尔瓦多农业社区的极端水文气象事件
- 批准号:
1855690 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
IRES Track III: Collaborative Research: Coupling Participatory and Hydrological Research for Adapting to Extreme Hydrometeorological Events in Agricultural Communities, El Salvador
IRES 轨道 III:合作研究:将参与性研究与水文研究相结合,以适应萨尔瓦多农业社区的极端水文气象事件
- 批准号:
1855654 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Adapting and Implementing a Geospatial High School Course in Career and Technical Education Clusters in Urban Settings
合作研究:在城市环境中职业和技术教育集群中调整和实施地理空间高中课程
- 批准号:
1759360 - 财政年份:2018
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Adapting and Implementing a Geospatial High School Course in Career and Technical Education Clusters in Urban Settings
合作研究:在城市环境中职业和技术教育集群中调整和实施地理空间高中课程
- 批准号:
1759371 - 财政年份:2018
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Adapting and Implementing a Geospatial High School Course in Career and Technical Education Clusters in Urban Settings
合作研究:在城市环境中职业和技术教育集群中调整和实施地理空间高中课程
- 批准号:
1759370 - 财政年份:2018
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Easily Adapting Apps to Diverse Wearable Form Factors
CSR:小:协作研究:轻松调整应用程序以适应不同的可穿戴设备外形
- 批准号:
1717973 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Standard Grant