RUI: Miniaturized Paper as a Low-Cost, Patternable, Shapable and Degradable Scaffold for Cell Culture and Tissue Engineering

RUI:微型纸作为细胞培养和组织工程的低成本、可图案化、可成型和可降解的支架

基本信息

项目摘要

Non-technical:This award by the Biomaterials Program in the Division of Materials Research to the California Polytechnic State University, San Luis Obispo will support the development and characterization of a new biomaterial intended to facilitate the growth of 3-Dimensional tissues in a laboratory setting. An initial application of the new material will include the development of tissue-engineered blood vessels, which could have important implications for future medically-relevant applications. The primary objective of this project is to demonstrate the use of an inexpensive, chemically-modified paper as a scaffold for sustaining the growth of cells in culture. Importantly, paper can be readily patterned, and it can be easily shaped into two-dimensional and three-dimensional structures, allowing for the preparation of intricate tissue shapes. The chemical modification process results in the miniaturization of the paper-scaffold and it also imparts a unique property to the paper, a tunable degradation of the scaffold in aqueous solutions. This award will support the training of the next generation of STEM field scientists through active undergraduate and graduate participation, allowing these students to engage in basic science and engineering research with real-world applications. This project will increase the public awareness of science through the development of visually appealing experiments and structures that are easy to understand on a basic level, yet have compelling applications.Technical:Scaffolds are a key component for tissue engineering, and have been shown to have a significant effect on the morphology of cells cultured in-vitro. The research objective of this proposal is to develop and characterize a new biomaterial that is inexpensive to produce, that can be patterned with reagents, that can be shaped easily into two-dimensional and three-dimensional structures, that degrades in aqueous solutions at a tunable rate, and that could be used as a scaffold for 3D cell culture and tissue engineering. The biomaterial will be made by the oxidation of cellulose-based paper with periodate, to produce 2,3-dialdehyde cellulose via the Malaprade reaction. This chemical modification of cellulose results in the miniaturization of the tissue scaffold and allows for its tunable dissolution in aqueous media. Wax patterning of this dialdehyde paper will allow for subsequent deposition of cellular growth factors and seeding of discrete cell cultures in two-dimensions. Stacking layers of dialdehyde paper in turn allows for three-dimensional tissue engineering, as is required for engineered blood vessels, such as coronary arteries. The proposed work will also advance the understanding of dialdehyde cellulose as a biomaterial, as well as the relationships between the degree of oxidation of paper and the mechanical properties of paper. Undergraduate and graduate students, many of whom are under-represented minorities, will play a prominent role with this project, allowing them to engage in basic science and engineering research with real-world applications, while learning important interdisciplinary scientific techniques that will prepare them to be the scientists of the future.
非技术性:该奖项由材料研究部生物材料项目授予圣路易斯奥比斯波加州理工州立大学,将支持旨在促进实验室环境中三维组织生长的新生物材料的开发和表征。新材料的初步应用将包括组织工程血管的开发,这可能对未来的医学相关应用产生重要影响。该项目的主要目的是证明使用廉价的化学改性纸作为支架,用于维持培养中细胞的生长。重要的是,纸可以很容易地形成图案,并且它可以很容易地成形为二维和三维结构,从而允许制备复杂的组织形状。化学改性过程导致纸支架的小型化,并且还赋予纸独特的性质,即支架在水溶液中的可调降解。该奖项将通过积极的本科生和研究生参与来支持下一代STEM领域科学家的培训,使这些学生能够从事具有实际应用的基础科学和工程研究。该项目将通过开发具有视觉吸引力的实验和结构来提高公众对科学的认识,这些实验和结构在基础水平上易于理解,但具有令人信服的应用。技术:支架是组织工程的关键组成部分,已被证明对体外培养的细胞形态有显着影响。该提案的研究目标是开发和表征一种新的生物材料,该材料生产成本低,可以用试剂图案化,可以容易地成形为二维和三维结构,在水溶液中以可调速率降解,并且可以用作3D细胞培养和组织工程的支架。该生物材料将通过用高碘酸盐氧化纤维素基纸来制备,以通过Malaprade反应产生2,3-二醛纤维素。纤维素的这种化学改性导致组织支架的小型化,并允许其在水性介质中的可调溶解。这种二醛纸的蜡图案化将允许随后沉积细胞生长因子和二维接种离散细胞培养物。叠层二醛纸反过来又允许三维组织工程,这是工程血管(如冠状动脉)所需的。该研究也将有助于进一步了解双醛纤维素作为一种生物材料,以及纸张氧化程度与纸张力学性能之间的关系。本科生和研究生,其中许多是代表性不足的少数民族,将在这个项目中发挥突出作用,使他们能够从事基础科学和工程研究与现实世界的应用,同时学习重要的跨学科科学技术,这将使他们成为未来的科学家。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of commercially-available conductive filaments for 3D printing flexible circuits on paper
  • DOI:
    10.7717/peerj-matsci.21
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aditya R. Jangid;E. B. Strong;Jacqueline Chuang;Andres W. Martinez;Nathaniel W. Martinez
  • 通讯作者:
    Aditya R. Jangid;E. B. Strong;Jacqueline Chuang;Andres W. Martinez;Nathaniel W. Martinez
Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs)
  • DOI:
    10.1038/s41598-018-37029-0
  • 发表时间:
    2019-01-09
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Strong, E. Brandon;Schultz, Spencer A.;Martinez, Nathaniel W.
  • 通讯作者:
    Martinez, Nathaniel W.
How To Shrink Paper Money: A Macroscopic Demonstration of the Malaprade Reaction
如何缩小纸币:马拉普拉德反应的宏观论证
  • DOI:
    10.1021/acs.jchemed.8b00951
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Strong, E. Brandon;Lore, Brittany A.;Christensen, Emily R.;Martinez, Nathaniel W.;Martinez, Andres W.
  • 通讯作者:
    Martinez, Andres W.
Paper miniaturization via periodate oxidation of cellulose
通过纤维素的高碘酸盐氧化实现纸张小型化
  • DOI:
    10.1007/s10570-018-1805-4
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Strong, E.B.;Kirschbaum, C.W.;Martinez, A.W.;and Martinez, N. W.
  • 通讯作者:
    and Martinez, N. W.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathaniel Martinez其他文献

Nathaniel Martinez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track L: An Integrated and Miniaturized Opioid Sensor System: Advancing Evidence-Based Strategies for Addressing the Opioid Crisis
NSF 融合加速器轨道 L:集成和小型化阿片类药物传感器系统:推进解决阿片类药物危机的循证策略
  • 批准号:
    2344344
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of a miniaturized biotechnology platform for nucleic acid extraction, purification, and library preparation
I-Corps:用于核酸提取、纯化和文库制备的小型生物技术平台的转化潜力
  • 批准号:
    2421022
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
ERI: Low-Cost, Miniaturized, Wideband and Wide-Angle Beam Steering Array For 5G Communication System
ERI:用于 5G 通信系统的低成本、小型化、宽带和广角波束控制阵列
  • 批准号:
    2301851
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
I-Corps: Blood Pressure Monitoring by a Miniaturized Cuffless Sensor
I-Corps:通过小型无袖带传感器进行血压监测
  • 批准号:
    2332674
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
  • 批准号:
    10658204
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
BREATH-SENSE: Miniaturized plasma emission spectroscopy-based breath analysis for unobtrusive at-home monitoring and prediction of COPD exacerbations
BREATH-SENSE:基于小型等离子体发射光谱的呼吸分析,用于在家监测和预测 COPD 恶化
  • 批准号:
    10093352
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    EU-Funded
Demonstrating miniaturized production of a KOR PET tracer as a proof-of-concept for low-cost distribution of nascent PET neurotracers
展示 KOR PET 示踪剂的小型化生产,作为新兴 PET 神经示踪剂低成本分销的概念验证
  • 批准号:
    10822523
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
  • 批准号:
    10761587
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
A Miniaturized and Integrated Continuous Metabolic Monitoring Platform
小型化集成连续代谢监测平台
  • 批准号:
    10721798
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了